首页|参数优化FMD的滚动轴承早期故障诊断

参数优化FMD的滚动轴承早期故障诊断

扫码查看
由于滚动轴承早期故障信号特征微弱,特征模态分解(feature mode decomposition,FMD)分解性能受参数滤波器长度L和模态个数n的影响,提出一种参数优化FMD早期故障诊断方法.首先,基于平方包络谱基尼系数(square envelope spectrum gini indix,SESGI)自适应确定FMD的滤波器长度L和模态个数n;其次,采用参数优化的FMD将信号分解为n个模态分量,并根据峭度值最大选择敏感模态分量;最后,对敏感模态分量进行包络分析,判断滚动轴承故障类型.仿真和实验结果表明,该方法可以自适应确定FMD最优参数组合,有效提取故障特征信息.通过与变分模态分解(variational mode decomposition,VMD)对比分析,参数优化FMD提取到的故障特征频率倍频较明显,具有更好的特征提取性能,能够实现滚动轴承故障的精确诊断.
Early Fault Diagnosis of Rolling Bearings Based on Parameter Optimization FMD
Since the early fault signal features of rolling bearing are weak,the performance of feature mode decomposition is affected by the length of parameter filter L and the number of modes n.A parametric opti-mization method for FMD early fault diagnosis is proposed.Firstly,the filter length L and the number of modes n of FMD are determined adaptively based on square envelope spectrum gini indix.Then,the signal is decomposed into n modal components by using parametric optimized FMD,and the sensitive modal com-ponents are selected according to the kurtosis value.Finally,the envelope analysis of the selected sensitive modal components is carried out to judge the fault type of the rolling bearing.Simulation and experimental results show that the proposed method can self-adaptively determine the optimal FMD parameter combina-tion and effectively extract fault feature information.Through comparison and analysis with variational mode decomposition,the fault feature frequency extracted by parameter optimization FMD is more obvious,and has better feature extraction performance,which can realize the accurate diagnosis of rolling bearing fault.

feature mode decompositionfeature extractionfault diagnosissquare envelope spectrum gini indix

王晓真、彭勃、王家忠、万书亭

展开 >

河北农业大学机电工程学院,保定 071001

华北电力大学河北省电力机械装备健康维护与失效预防重点实验室,保定 071003

特征模态分解 特征提取 故障诊断 平方包络谱基尼系数

河北农业大学引进人才科研专项河北省引进留学人员项目河北省高等学校科学技术研究项目河北省电力机械装备健康维护与失效预防重点实验室项目

YJ2021056C20230334BJK2024038KF2021-01

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(6)