首页|基于GA-BP-FA算法的多轴铣削残余应力优化

基于GA-BP-FA算法的多轴铣削残余应力优化

扫码查看
提出了面向多轴铣削GH4169 的残余应力控制的GA-BP-FA多目标优化模型,运用遗传算法(GA)优化BP神经网络的初始权值和阈值,提升神经网络算法的收敛速度和预测精度.基于GA-BP算法建立了铣削残余应力预测模型,并分析了铣削工艺参数对残余应力的影响.以获得最小残余拉应力/最大残余压应力为目标,基于萤火虫算法(FA)对铣削工艺参数进行优化.研究结果表明,所建立的残余应力的 GA-BP 预测模型具有较高的预测精度,两个方向的平均误差分别为18.9%和16.7%.经FA算法优化后,所选参数阈内最优工艺参数为切削倾角Φ=85°,切削速度v=20 m/min,每齿进给量fz=0.01 mm/z.优化后σx 方向的残余压应力-463.43 MPa和σy 方向的残余压应力-686.93 MPa.
Optimization of Process Parameters for Residual Stress Based on GA-BP-FA Algorithm
A GA-BP-FA multi-objective optimization model for residual stress control in multi-axis milling GH4169 is proposed.Genetic algorithm(GA)is used to optimize the initial weight and threshold of BP neu-ral network,which improves the rate of convergence and prediction accuracy of the model.A method for pre-dicting residual stress in multi-axis milling using the GA-BP model is proposed,and the influence of process parameters on residual stress is analyzed.In order to obtain the minimum residual tensile stress/maximum re-sidual compressive stress,the milling process parameters are optimized based on firefly algorithm(FA).The research results indicate that the established GA-BP prediction model for residual stress has high prediction accuracy,with average errors of 18.9%and 16.7%in both directions,respectively.After optimization by the FA algorithm,the optimal process parameter within the selected parameter threshold is the cutting inclination angle Φ=85°,cutting speed v=20 m/min,feed rate per tooth fz=0.01 mm/z.The optimal residual compres-sive stress is-463.43 MPa in the σx direction and-686.93 MPa in the σy direction.

GH4169GA-BP-FAmulti-axis millingresidual stress

王丽博、周金华、王宗园

展开 >

河南机电职业学院智慧城市学院,新郑 451100

西北工业大学机电学院,西安 710072

GH4169 GA-BP-FA 多轴铣削 残余应力

航空科学基金

2019ZE053008

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(6)