首页|基于SABO优化VMD与K-means++的机器人磨削颤振识别

基于SABO优化VMD与K-means++的机器人磨削颤振识别

扫码查看
机器人由于低刚度特性导致加工中极易产生颤振,针对颤振特征频率提取与颤振识别问题,提出基于减法平均优化算法(SABO)对变分模态分解(VMD)中关键参数进行优化,筛选颤振敏感IMF分量并重组;根据颤振信号的频谱特性构建基于功率谱熵差(ΔPSE)的颤振识别指标,采用K-means++算法对不同颤振类型进行辨识.实验结构表明,所提出的SABO-VMD-K-means++方法可以准确识别机器人磨削加工颤振类型,为机器人磨削颤振监测提供一定的指导.
Chatter Recognition of Robotic Grinding Process Based on SABO Optimized VMD and K-means++
Due to low stiffness characteristics,the robot is susceptible to chatter vibration during machi-ning.To address the issues of feature frequency extraction and recognition of chatter vibration,a subtrac-tion-average-based optimizer(SABO)is proposed to optimize key parameters in VMD,allowing for the selection and recombination of chatter-sensitive IMF components.Furthermore,a vibration recognition index based on the power spectral entropy difference(ΔPSE)is constructed,taking into account the spectral characteristics of the vibration signal.The K-means++algorithm is employed to distinguish different types of chatter vibrations.Experimental results demonstrate SABO-VMD-K-means++method can accurately i-dentify the types of chatter vibration in robot grinding processes,providing valuable guidance for chatter vi-bration monitoring in robot grinding operations.

robot grinding chattersubtraction-average-based optimizerfeature extractionchatter type i-dentification

吴俊烨、张浩、顾波、胡孟成

展开 >

南京工业大学机械与动力工程学院,南京 211816

江苏省工业装备数字制造及控制技术重点实验室,南京 211899

机器人磨削颤振 减法平均优化算法 特征提取 颤振类型识别

江苏省科技成果转化专项

BA2022021

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(6)