首页|融合多分支网络结构的高频工件图像识别算法

融合多分支网络结构的高频工件图像识别算法

扫码查看
为有效解决复杂光照变化下高频工件图像识别率低的问题,提出一种融合多分支网络结构的高频工件图像识别算法.该算法以Efficient-b0 为基础网络,首先,引入轻量级的混合注意力模块提取强光照鲁棒性的全局工件图像特征,经过主干网络得到全局识别结果;然后,采用弱监督区域检测模块定位工件的局部重要区域,并将其引入分支网络得到局部识别结果;最后,在分支融合模块中联合全局和局部识别结果实现工件识别.实验结果表明,相较于多种图像识别算法,所提出的算法对光照变化具有更强的适应性,显著提高了高频工件识别性能,识别准确率达到了97.8%.
High Frequency Workpiece Image Recognition Algorithm Based on Fusion of Multi Branch Network Structure
In order to effectively solve the problem of low recognition rate of high-frequency workpiece im-ages under complex illumination changes,this paper proposes a high-frequency workpiece image recogni-tion algorithm that integrates multi-branch network structure.The algorithm uses Efficient-b0 as the basic network.Firstly,a lightweight mixed attention module is introduced to extract the global workpiece image features with strong illumination robustness,and the global recognition result is obtained through the back-bone network;then,the weakly supervised area detection module is used to locate the workpiece The local important area is introduced into the branch network to obtain the local recognition result;finally,the global and local recognition results are combined in the branch fusion module to realize the artifact recognition.The experimental results show that,compared with various image recognition algorithms,the proposed algo-rithm has stronger adaptability to illumination changes,significantly improves the performance of high-fre-quency workpiece recognition,and the recognition accuracy reaches 97.8%.

illumination changenetwork structurehybrid attentionregion detectionimage recognition

孙成龙、李柏林、李节、王逸涵、欧阳

展开 >

西南交通大学机械工程学院,成都 610031

成都大学机械工程学院,成都 610106

光照变化 网络结构 混合注意力 区域检测 图像识别

四川省科技厅重点研发项目

2021YFN0020

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(7)
  • 8