首页|基于SO-ELM的数控机床进给系统热误差分析

基于SO-ELM的数控机床进给系统热误差分析

扫码查看
为了对数控机床进给系统热误差进行更加精确的预测,提出一种基于蛇优化(SO)算法和极限学习机(ELM)的数控机床进给系统热误差预测模型SO-ELM.利用模糊c均值聚类(FCM)和灰色关联度分析(GRA)筛选出进给系统的关键测温点;通过蛇优化算法优化极限学习机的输入层权重和隐藏层偏置,利用关键温度测点的温升数据和热误差数据构建SO-ELM热误差预测模型.为验证模型的准确性和适用性,与基于SSA-BP和LSMT的热误差预测模型进行对比分析,结果表明SO-ELM模型预测结果的均方根误差和决定系数均优于SSA-BP和LSTM模型,能够更精准地对机床进给系统热误差进行预测,为机床热误差预测补偿提供一种新的思路.
Thermal Error Analysis of CNC Machine Tool Feed System Based on SO-ELM
In order to predict the thermal error of CNC machine tool feed system more accurately,a numer-ical control machine tool feed system thermal error prediction model SO-ELM based on snake optimization(SO)algorithm and extreme learning machine(ELM)is proposed.Using fuzzy c-means clustering(FCM)and grey correlation analysis(GRA)to screen out key temperature measurement points of the feed system;Then,the snake optimization algorithm is used to optimize the input layer weights and hidden layer biases of the limit learning machine,and the SO-ELM thermal error prediction model is constructed using the temperature rise data and thermal error data of key temperature measurement points.To verify the accu-racy and applicability of the model,a comparative analysis was conducted with the thermal error prediction models based on SSA-BP and LSMT.The results showed that the root mean square error and determination coefficient of the SO-ELM model prediction results were better than those of SSA-BP and LSTM models,which can better predict the thermal error of the machine tool feed system and provide a new idea for the compensation of machine tool thermal error prediction.

feed systemthermal error predictionsnake optimizationextreme learning machine

杨铜铜、孙兴伟、杨赫然、刘寅、赵泓荀

展开 >

沈阳工业大学机械工程学院,沈阳 110870

沈阳工业大学辽宁省复杂曲面数控制造技术重点实验室,沈阳 110870

进给系统 热误差预测 蛇优化 极限学习机

国家自然科学基金项目辽宁省应用基础研究计划项目2022年度辽宁省教育厅高等学校基本科研项目面上项目

520053462022JH2/101300214LJKMZ20220459

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(7)
  • 10