首页|基于声振信号融合的设备智能诊断

基于声振信号融合的设备智能诊断

扫码查看
单一传感器检测易受外界干扰或自身故障等多种因素限制导致滚动轴承故障诊断结果欠佳一直是设备智能诊断领域难点问题.针对上述问题,提出了一种基于声振信号融合的智能诊断方法.首先,通过传感器配置采集滚动轴承的振动信号和声音信号;然后,利用变分模态分解(varia-tional mode decomposition,VMD)对振动信号和声音信号进行分解与重构;随后,将重构后的声振信号输入双通道卷积神经网络(dual-channel convolutional neural network,DCNN)实现故障特征提取与特征融合;最后,将提取和融合的故障特征输入至DCNN网络SoftMax层进行故障分类建模.结果表明,与基于单一振动信号的CNN故障诊断模型相比,提出的基于声振信号融合的故障诊断方法准确率可以达到99.3%,融合后的特征更能有效区分设备不同的故障状态.
Intelligent Diagnosis of Equipment Based on Acoustic Vibration Fusion
A single sensor detection is vulnerable to external interference or its own failure and other factors leading to poor diagnosis of rolling bearing failure has been a difficult problem in the field of intelligent di-agnosis of equipment.Aiming at the above problems,an intelligent diagnosis method based on acoustic and vibration signal fusion is proposed.Firstly,the vibration signal and acoustic signal of the rolling bearing are collected through the sensor configuration.Then,the vibration signal and acoustic signal are decomposed and reconstructed by variational mode decomposition(VMD).Furthermore,the reconstructed acoustic and vibration signals are input into a dual-channel convolutional neural network(DCNN)to achieve fault fea-ture extraction and feature fusion.Finally,the extracted and fused fault features are input into the SoftMax layer of the DCNN network for fault classification modeling.The results show that the proposed fault diag-nosis method based on acoustic-vibration signal fusion can reach 99.3%accuracy compared with the CNN fault diagnosis model based on a single vibration signal,and the fused features are more effective in distin-guishing different fault states of equipment.

acoustic vibration fusionfault diagnosisvariational mode decompositionrolling bearingdual-channel convolutional neural network

赵春旭、张学亮、刘思良、戚雯雯、王村松、张泉灵

展开 >

南京工业大学智能制造研究院,南京 210009

中国石油化工股份有限公司天然气分公司,北京 100029

声振融合 故障诊断 变模态分解 滚动轴承 双通道卷积神经网络

国家重点研发计划项目国家自然科学基金项目江苏省自然科学基金项目

2021YFB330130062203213BK20220332

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(7)
  • 10