首页|基于K-means退化识别和随机森林的滚动轴承寿命分析

基于K-means退化识别和随机森林的滚动轴承寿命分析

扫码查看
针对滚动轴承剩余寿命(remaining useful life,RUL)预测方法中的寿命标签难以反映实际情况和预测精度不高的问题,提出了一种基于PCA-Kmeans-RF的滚动轴承剩余寿命分析方法.首先,通过小波降噪与快速傅里叶变换(fast fourier transform,FFT)分别对原始的水平振动信号进行降噪处理和提取多种时域、频域的特征;其次,通过方差过滤(variance filtering,VF)和主成分分析(prin-cipal component analysis,PCA)进行特征处理来选择更优的退化特征并融合特征构建健康指标(health indicators,HI);随后,利用K-means聚类确定样本的退化点和失效点,并以此构建剩余寿命的更为真实的退化标签,并将健康指标和时间标签输入到随机森林中进行训练和测试;最后,通过所提出的方法对IEEE PHM 2012 滚动轴承数据集进行验证和对比.结果表明该方法取得了良好的结果.
Life Analysis of Rolling Bearing Based on K-means Degradation Identification and Random Forest
The problem that the life label in the prediction method of residual useful life(RUL)of rolling bearing is difficult to reflect the actual situation and the prediction accuracy is not high,a analysis method of residual life of rolling bearing based on PCA-Kmeans-RF is proposed.Firstly,the original horizontal vi-bration signal is denoised by wavelet denoising and fast fourier transform(FFT),and various features in time domain and frequency domain are extracted.Secondly,through variance filtering(VF)and principal component analysis(PCA)for feature processing,better degraded features are selected and fused to con-struct health indicators(HI).Then,K-means clustering is used to determine the degradation point and fail-ure point of the sample,and a more realistic degradation label of the remaining life is constructed,and the health index and time label are input into the random forest for training and testing.Finally,the IEEE PHM 2012 rolling bearing data set is verified and compared by the proposed method.The results show that this method has achieved results.

rolling bearinglife analysismulti-stage degradationrandom forest

白晓平、刘雨杭

展开 >

西安建筑科技大学管理学院,西安 710055

滚动轴承 寿命分析 多阶段退化 随机森林

国家自然科学基金项目

51774228

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(7)
  • 9