首页|基于改进DDQN的无人车路径规划算法

基于改进DDQN的无人车路径规划算法

扫码查看
针对DDQN算法在路径规划方面存在收敛速度慢和路径质量低等问题,基于DDQN算法研究了一种无人车路径规划算法.首先,通过获得多个时刻的奖励值,将这些奖励累加并均值处理从而充分利用奖励值信息;然后,通过优化斥力生成的方向改进人工势场法,并用改进的人工势场法代替随机探索提升收敛速度;最后,通过判断路径与障碍物的关系移除冗余节点,并使用贝塞尔曲线对路径进行平滑处理提升路径质量.仿真结果表明,在 20×20 的两种环境中,改进的DDQN算法相比原始 DDQN 算法收敛速度分别提升 69.01%和 55.88%,路径长度分别缩短 21.39%和14.33%,并且路径平滑度更高.将改进的DDQN算法部署在无人车上进行检验,结果表明无人车能够较好完成路径规划任务.
An Improved DDQN Path Planning Algorithm for Unmanned Vehicle
Aiming at the problems of slow convergence speed and low path quality in the DDQN algo-rithm,a path planning algorithm for unmanned vehicles based on DDQN was studied.First,the reward val-ue information is made full use of by obtaining the reward values at a plurality of times,accumulating the rewards,and averaging the rewards.Then,the artificial potential field method is improved by optimizing the direction of repulsion generation,and the improved artificial potential field method is used to replace the random exploration to improve the convergence rate.Finally,the redundant nodes are removed by judging the relationship between the path and obstacles,and the Bessel curve is used to smooth the path to improve the quality of the path.Simulation results show that the convergence rate of the improved DDQN algorithm is improved by 69.01%and 55.88%,and the path length is shortened by 21.39%and 14.33%,respec-tively,compared with the original DDQN in the two environments of 20×20,and the path smoothness is higher.The improved DDQN algorithm is deployed on the unmanned vehicle to test,and the results show that the unmanned vehicle can complete the path planning task well.

reinforcement learningdeep Q-networkartificial potential fieldpath planning

曹京威、何秋生

展开 >

太原科技大学电子信息工程学院,太原 030024

强化学习 深度Q网络 人工势场 路径规划

山西省自然科学研究面上项目山西省研究生科研创新项目

202103021232222023KY648

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(8)