首页|基于PCA-SIFT特征融合的铸件冒口点云匹配研究

基于PCA-SIFT特征融合的铸件冒口点云匹配研究

扫码查看
当前自动化铸件冒口切割机器人系统研制在识别和定位冒口方面要求精确,且面临现场环境复杂、相机采集数据量大、处理效率低、算法不稳定性导致误差较大等问题.针对上述问题,提出PCA-SIFTS4 的点云配准方法,首先,对采集的场景点云数据通过多阶段滤波和聚类分割技术,从复杂的场景中提取出高质量的冒口点云;其次,基于PCA与3D-SIFT特征融合提取冒口点云的特征属性,降低Super4PCS粗配准的搜索复杂度,缩短配准时间;最后,采用点到面的ICP算法进行精配准,运用所提出的方法对典型形状冒口点云进行配准实验,与传统配准算法相比,配准时间和均方根误差分别平均降低78.53%和64.93%,结果表明PCA-SIFTS4 算法对于环境复杂、数据量大、特征不明显的冒口点云具有较好的实时性和精确性.
Research on Point Cloud Matching of Casting Risers Based on Fusion of PCA-SIFT Features
The current development of automated casting riser cutting robot system requires precision in i-dentifying and positioning the riser,and faces problems such as complex scene environment,large amount of data collected by the camera,low processing efficiency,and unstable algorithms leading to large errors.Aiming at the above problems,this paper proposes a PCA-SIFTS4 point cloud alignment method,firstly,the collected field point cloud data are filtered by multi-stage filtering and clustering segmentation techniques to extract high-quality riser point clouds from complex scenes;secondly,the feature attributes of riser point clouds are extracted based on the fusion of PCA and 3D-SIFT features,which reduces the searching com-plexity of the Super4PCS coarse alignment and Finally,the point-to-face ICP algorithm is used for fine a-lignment.In this paper,the proposed method is applied to the typical shape of the riser point cloud for the a-lignment experiment,compared with the traditional alignment algorithm,the alignment time and root mean square error are reduced by 78.53%and 64.93%on average,which shows that the PCA-SIFTS4 algorithm has better real-time and accuracy for the riser point cloud with complex environment,large data volume and inconspicuous features.

casting riserspoint cloud alignment3D-SIFTSuper4PCS

穆春阳、杨科、马行

展开 >

北方民族大学机电工程学院,银川 750021

北方民族大学宁夏智能信息与大数据处理重点实验室,银川 750021

北方民族大学电气信息工程学院,银川 750021

铸件冒口 点云配准 3D-SIFT Super4PCS

自治区科技创新领军人才培养工程项目银川市科技创新项目宁夏回族自治区重点研发计划项目北方民族大学研究生创新项目

2021GKLRLX082022GX042021BEE03002YCX22130

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(8)