首页|改进SSD算法在工件表面缺陷检测中的应用

改进SSD算法在工件表面缺陷检测中的应用

扫码查看
为能够更为高效地检测工件表面加工缺陷,提出了一种MobileNetV3-SSD目标检测算法,它能够有效实现工件表面缺陷检测.此算法通过改进SSD的骨架网络为MobileNetV3-Large,有效减少网络参数量和计算量,通过结合自底向上的特征金字塔网络的改进算法,使网络能够捕捉不同尺度和形状的目标信息,将语义分割辅助任务与多层特征融合相结合,进一步提升检测性能.使用PASCAL VOC数据集和Kolektor工业缺陷数据集验证该算法,在PASCAL VOC数据集上的mAP达到77.3%,较SSD算法提高0.4%,在Kolektor数据集上的FPS达到了105,较SSD算法提高112%.验证了MobileNetV3-SSD算法相较于传统SSD网络,具有更好的检测精度和检测速度.
Application of Improved SSD Algorithm in Surface Defect Detection of Workpieces
A MobileNetV3-SSD object detection algorithm is proposed to efficiently detect surface defects in workpieces.This algorithm improves the skeleton network of SSD by using MobileNetV3-Large,effec-tively reducing the network parameters and computational complexity.By combining a bottom-up feature pyramid network and an improved algorithm,the network is able to capture target information of different scales and shapes.Furthermore,the algorithm incorporates semantic segmentation as an auxiliary task and fuses multi-level features to further enhance the detection performance.The method is validated using the PASCAL VOC dataset and the Kolektor industrial defect dataset,achieving an mAP of 77.3%on the PAS-CAL VOC dataset,which is a 0.4%improvement over the SSD algorithm.The FPS on the Kolektor dataset reaches 105,which is a 112%improvement over the SSD algorithm.These results validate that the Mobile-NetV3-SSD algorithm outperforms the traditional SSD network in terms of detection accuracy and speed.

object detectionMobileNetSSD algorithmdefect detection

周茂军、胡江涛、王俊杰、彭德政、马沁怡、王雅君

展开 >

大连工业大学机械工程与自动化学院,大连 116034

目标检测 MobileNet SSD算法 缺陷检测

国家重点研发计划项目辽宁省教育厅高校基本科研项目

2022YFD2100603LJKMZ20220888

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(8)