首页|基于KAS-YOLO的钢板表面缺陷检测

基于KAS-YOLO的钢板表面缺陷检测

扫码查看
针对当前基于视觉的钢板表面缺陷检测方法对小缺陷目标识别困难造成检测精度低的问题,提出一种基于YOLOv5s的钢板表面缺陷检测模型KAS-YOLO.首先,通过使用空洞空间金字塔池化模块来获取更大的感受野以提取更多表面缺陷的特征信息,并融入坐标注意力机制来提高特征提取能力;其次,用K-means算法聚类得到更匹配的锚框,不仅增加了正样本的数量,而且加速了模型的收敛;最后,采用SIoU损失函数来进一步提升模型对表面缺陷目标的定位和检测能力.实验结果表明,提出的KAS-YOLO模型对钢板表面缺陷的检测精度和速度优于Faster R-CNN、SSD、Reti-naNet和YOLOv5s等主流检测方法.
Surface Defect Detection of Steel Plate Based on KAS-YOLO
As the difficulty in identifying small defect targets,the vision-based of steel plate surface defect detection method has the problem of low detection accuracy.The model KAS-YOLO based on YOLOv5s is proposed for steel plate surface defect detection.Firstly,the hollow space pyramid pooling module is used to obtain a larger receptive field to extract more feature information of surface defects,and coordinate attention mechanism is chosen to improve the feature extraction ability.Then the K-means algorithm is used to obtain a more matched anchor frame,which not only increases the number of positive samples,but also accelerates the convergence of the model.Finally,the loss function of SIoU is used to improve the ability of locating and detecting for surface defect targets furtherly.The experimental results show that the proposed KAS-YO-LO model is superior to the methods such as Faster R-CNN,SSD,RetinaNet and YOLOv5s in the detection accuracy and speed for the detection of steel plate surface defects.

surface defect of steel sheetYOLOv5sattention mechanismanchorloss function

敖思铭、周诗洋、杨智颖、刘怀广

展开 >

武汉科技大学冶金装备及其控制教育部重点实验室,武汉 430081

武汉科技大学机械传动与制造工程湖北省重点实验室,武汉 430081

武汉科技大学精密制造研究院,武汉 430081

钢板表面缺陷 YOLOv5s 注意力机制 锚框 损失函数

国家自然科学基金项目

51805386

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(8)