首页|基于改进粒子群算法的ER8机器人轨迹规划

基于改进粒子群算法的ER8机器人轨迹规划

扫码查看
为解决传统机器人工作效率低、稳定性不足和传统粒子群算法易早熟等问题,提出了一种基于改进粒子群算法的时间最优轨迹规划算法.通过改进粒子群算法的惯性权重和学习因子,优化了粒子群算法的局部和全局搜索能力.首先,以国产ER8 型机器人为研究对象,采用改进型D-H参数法获得机器人连杆参数数据,同时通过运动学正逆解理论计算求出了轨迹插值点;其次,利用MATLAB机器人工具箱建立了ER8 机器人仿真模型,由于正逆解理论值与仿真结果完全相一致,证明了所建仿真模型的正确性;最后,通过MATLAB仿真得到机器人3-5-3 多项式插值构造的轨迹中各关节的位置、速度和加速度等信息,在满足运动学约束的前提下,利用改进粒子群算法优化 3-5-3 混合多项式插值函数构造的轨迹,机器人用于完成轨迹的时间从3s减少到1.037 5 s,相对于优化前,整体运行时间缩短了大约65%,证明文中改进的粒子群算法可以有效实现时间最优的轨迹规划.
Trajectory Planning of ER8 Robot Based on Improved Particle Swarm Algorithm
In order to improve the problems of low work efficiency,insufficient stability and precocious rip-ening of traditional particle swarm algorithms,a time-optimal trajectory planning algorithm based on im-proved particle swarm algorithm is proposed.By improving the inertial weight and learning factors of the particle swarm algorithm,the local and global search capabilities of the particle swarm algorithm are opti-mized.Firstly,taking the domestic ER8 robot as the research object,uses the improved D-H parameter method to obtain the robot linkage parameter data,and at the same time calculates the trajectory interpola-tion and point through the kinematic positive and inverse solution theory.Secondly,the ER8 robot simula-tion model is established by using the MATLAB robot toolbox.Because the theoretical value of the positive and inverse solution is completely consistent with the simulation results,it proves the correctness of the built simulation model.Finally,through MATIAB simulation,information such as the position,speed and acceler-ation of each joint in the trajectory of the robot′s 3-5-3 polynomial interpolation structure is obtained.Under the premise of meeting the kinematic constraints,the trajectory of the 3-5-3 hybrid polynomial interpolation structure is optimized by using the improved particle swarm algorithm.The robot is used to complete The trajectory time has been reduced from 3 s to 1.037 5 s.Compared with before optimization,the overall run-ning time has been shortened by about 65%,which proves that the improved particle swarm algorithm in the article can effectively realize the optimal trajectory planning.

modified D-H methodkinematicspolynomial interpolationimproved particle swarm algo-rithmtrajectory planning

郭北涛、刘磊、张丽秀

展开 >

沈阳化工大学机械与动力工程学院,沈阳 110142

沈阳建筑大学交通与机械工程学院,沈阳 110168

改进D-H法 运动学 多项式插值 改进粒子群算法 轨迹规划

国家自然科学基金项目沈阳市科技计划项目

51375317F16-228-6-00

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(9)
  • 11