首页|多网络协同的三阶段电枢缺陷检测

多网络协同的三阶段电枢缺陷检测

扫码查看
电枢是微特电机的重要组成部件,其表面质量直接影响电机运行.当前有关电枢表面质量的检测准确率低下,特征难以把控.为提升信息捕捉效率,实现电枢缺陷的精细划分和识别,提出了一种多网络协同的三阶段电枢检测方法.首先,利用MobileNetV2 对电枢图像进行铜线和变阻区域完整性的分类检测;然后,将通过检测的图片利用YOLOv4 进行特征识别;最后,基于识别到的检测结果进行模式识别.实验结果表明,该方法可以准确、精细地划分电枢的缺陷.
Multi-Network Collaboration for Three-Stage Armature Defect Detection
The armature is an important component of a micro motor,and its surface quality directly affects the operation of the motor.Currently,the accuracy of armature surface quality detection is low,and it is dif-ficult to control the features.In order to improve information capture efficiency and achieve precise classifi-cation and identification of armatures′defects,article proposes a multi-network collaborative three-stage ar-mature detection method.Firstly,MobileNetV2 is used to classify the integrity of copper wire and variable resistance areas in armature images.Then,the detected images are processed using YOLOv4 for feature rec-ognition.Finally,pattern recognition is performed based on the recognized detection results.Experimental results show that this method can accurately and precisely classify armature defects.

armaturemulti-network collaborationconvolutional neural networkYOLOdefect detection

徐海涛、廖家威、夏雨微、王杰、方夏

展开 >

四川大学机械工程学院,成都 610065

电枢 多网络协同 卷积神经网络 YOLO 缺陷检测

四川省重点研发项目四川省科技厅项目

2022YFG00582022NSFSC1946

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(9)
  • 4