首页|基于BiLSTM-LSSVM的螺杆转子铣削加工廓形预测

基于BiLSTM-LSSVM的螺杆转子铣削加工廓形预测

扫码查看
针对螺杆转子盘铣刀加工过程中的轮廓预测问题,提出了基于双向长短时神经网络-最小二乘支持向量机(BiLSTM-LSSVM)的螺杆廓形预测方法.首先,对加工过程中的振动信号进行采集并进行降噪预处理,降噪后的信号进行降采样处理随后输入BiLSTM中进行时序预测;其次,对时序预测后的信号进行特征提取,将提取后的特征向量输入LSSVM进行廓形预测;最后,以五头螺杆为例通过正交实验对BiLSTM-LSSVM模型进行试验验证,并对预测廓形进行误差补偿实验.实验结果表明,提出的基于BiLSTM-LSSVM的螺杆廓形预测模型可对螺杆转子盘铣刀加工螺杆廓形进行准确预测,进而为螺杆转子加工廓形补偿提供支持.
Profile Prediction of Screw Rotor Milling Based on BiLSTM-LSSVM
Aiming at the problem of profile prediction in the machining process of screw rotor disc milling cutter,a screw profile prediction method based on Bi-directional long short-term memory and least square-support vector machines(BiLSTM-LSSVM)was proposed.Firstly,the vibration signals in the processing process are collected and pre-processed for noise reduction.The signals after noise reduction are down-sam-pled and then input into BILSTM for time series prediction.Secondly,feature extraction is carried out on the signal after time series prediction,and the extracted feature vector is input into LSSVM for profile pre-diction.Finally,the BiLSTM-LSSVM model is verified by orthogonal experiment,and the error compensa-tion experiment is carried out for the predicted profile.The experimental results show that the proposed screw profile prediction model based on BiLSTM-LSSVM can accurately predict the screw profile machining of the screw rotor disc milling cutter,and then provide support for the screw rotor profile compensation.

screw rotorbi-directional long short-term memoryleast square support vector machinespro-file prediction

李佳、孙兴伟、赵泓荀、穆士博、刘寅、杨赫然

展开 >

沈阳工业大学 机械工程学院,沈阳 110870

沈阳工业大学 辽宁省复杂曲面数控制造技术重点实验室,沈阳 110870

螺杆转子 长短时神经网络 最小二乘支持向量机 廓形预测

辽宁省应用基础研究计划项目国家自然科学基金项目2022年度辽宁省教育厅高等学校基本科研项目面上项目

2022JH2/10130021452005346LJKMZ20220459

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(9)
  • 6