首页|基于贝叶斯网络的减速器异常振动故障诊断

基于贝叶斯网络的减速器异常振动故障诊断

扫码查看
为实现减速器异常振动的故障类型快速判断、降低巡检与维护成本,研发了一种减速器异常振动智能诊断模型.在历史异常振动数据不充足、不平衡的情况下,通过对历史故障履历资料的梳理,建立了减速器故障树,并映射为减速器异常振动贝叶斯网络结构.同时,对历史异常振动数据进行振动特征提取与标签化,选择期望最大化(EM)算法为参数学习方法,确定贝叶斯网络节点变量的概率分布.在减速器运行过程中,该模型处理实时振动数据后,融合故障知识转化的异常振动特征判别机制与分层吉布斯采样算法,对各节点变量进行故障概率推理,实现异常振动故障的及时定位.通过模型性能测试发现所提出的故障诊断模型相比于其他典型模型,在诊断结果准确性与区分正常与异常振动数据的精度方面均取得了较大的提升,并将模型集成至带式输送机智能运维系统中进行了工程验证.
Abnormal Vibration Fault Diagnosis of Reducer Based on Bayesian Network
In order to recognize the fault type of abnormal vibration of the reducer and reduce the cost of inspection and maintenance,an intelligent diagnosis model of abnormal vibration of the reducer is devel-oped.In the case of insufficient and unbalanced historical abnormal vibration data,a fault tree of the reducer is established by combing the historical fault history data.It is then mapped to the Bayesian network struc-ture of the abnormal vibration of the reducer.The historical abnormal vibration data are extracted and la-beled.The expectation maximization(EM)algorithm is selected as the parameter learning method to deter-mine the probability distribution of the node variables in the Bayesian network.After processing real-time vibration data,the model integrates the abnormal vibration feature discrimination mechanism of fault knowl-edge transformation and hierarchical Gibbs sampling algorithm to carry out fault probability inference for each node variable.Therefore,it can realize the timely location of abnormal vibration fault.Compared with other models,the proposed model has achieved great improvement in the accuracy of diagnosis results and distinguishing normal and abnormal data.The model is integrated into the intelligent operation and mainte-nance system of belt conveyor for engineering verification.

reducerabnormal vibrationfault treeBayesian networkGibbs sampling

王子新、周晓峰、周安叶、谈昕、郑宇

展开 >

中冶宝钢技术服务有限公司,上海 200240

上海交通大学机械与动力工程学院,上海 200240

减速器 异常振动 故障树 贝叶斯网络 吉布斯采样

国家自然科学基金项目

52075338

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(9)
  • 6