首页|基于切削区域温度数据的刀具磨损预测

基于切削区域温度数据的刀具磨损预测

扫码查看
刀具磨损预测是制造业中至关重要的问题,提前预测刀具的磨损,并及时进行更换,能够降低生产成本,提高生产效率.选择切削区域温度数据来预测刀具磨损,同时考虑到加工过程中切削屑的脱落会影响数据的采集,设计了降噪算法来去除切削屑的干扰.具体而言,首先,设计了基于帧差法的降噪算法;之后,构建了卷积长短时记忆网络预测刀具磨损;最后,通过实验对方法的有效性进行验证.实验结果表明降噪算法能够有效地去除切削屑产生的噪声,提出的网络模型相比传统的BP神经网络模型预测精度有所提高,不同工况下的预测结果均方根误差平均降低了0.017 1.
Tool Wear Prediction Based on Noise Reduction Processing for Cutting Region Temperature Data
Tool wear prediction is a crucial issue in the manufacturing industry.Predicting tool wear in ad-vance and replacing it in a timely manner can reduce production costs and improve production efficiency.This article selects cutting area temperature data to predict tool wear,while considering the impact of cut-ting chips during the data collection process,a noise reduction algorithm is designed to remove the interfer-ence of cutting chips.Specifically,we constructed a convolutional long and short term memory neural net-work to extract features from temperature data in the cutting area and predict tool wear.The shedding of cutting chips can generate noise,and we use the idea of frame difference method to remove the influence of cutting chips.Finally,the effectiveness of the method was verified through experiments.The experimental results show that the noise reduction algorithm can effectively remove the noise generated by cutting chips,and The proposed network model has improved prediction accuracy compared to the traditional BP neural network model,and the average root mean square error of prediction results under different working condi-tions has decreased by 0.017 1.

tool wear predictiondata noise reductionframe difference methodneural network

郭宏、焦士轩、董超杰、李锴诚、畅晨吕、李欣伦

展开 >

太原科技大学机械工程学院,太原 030024

山西平阳重工机械有限责任公司,临汾 043000

刀具磨损预测 数据降噪 帧差法 神经网络

山西省重点研发项目

202102150401009

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(9)
  • 3