首页|基于改进深度学习的光伏电池膜厚预测

基于改进深度学习的光伏电池膜厚预测

扫码查看
针对光伏电池片PECVD镀膜工艺中,对膜厚的检测成本高、难度大、效率低的问题,在BP神经网络的基础上,提出了一种基于改进深度学习的光伏电池片膜厚预测方法.首先,在图像信息采集阶段,设计色深值搭建色相H和亮度L之间的函数关系;在数据处理阶段,对图像数据做归一化处理,达到简化计算的作用,提升了模型的性能;在神经网络训练阶段,采用Tanh函数作为激活函数,使优化过程更容易,提高了函数的收敛速度;使用LM算法作为网络的训练函数,能自适应地调整收敛速度,提高训练过程的稳定性,使模型能够更精确地完成回归任务;增加动量项以减少深度学习训练时的振荡趋势,提高模型预测过程的稳定性.实验结果表明,相比于传统的BP神经网络,改进后的模型迭代次数减少了8 次,膜厚预测的准确率提高了12.9%,平均误差降低了1.558 nm.最大误差控制在了4nm以内,满足大部分光伏电池片生产的膜厚检测需求.
Film Thickness Prediction of Photovoltaic Cells Based on Improved Deep llarning
To solve the problems of high cost,difficulty and low efficiency in the PECVD coating process of photovoltaic cells,a film thickness prediction method based on improved deep learning was proposed based on BP neural network.Firstly,in the image information acquisition stage,the color depth value is de-signed to build a functional relationship between hue H and brightness L.In the data processing stage,the image data is normalized to turn the dimensional dataset into a pure quantity,which simplifies the calcula-tion and improves the performance of the model.In the neural network training stage,the Tanh function is used as the activation function,which makes the optimization process easier and improves the convergence speed of the function.Using the LM algorithm as the training function of the network,the convergence speed can be adaptively adjusted,the stability of the training process can be improved,and the model can complete the regression task more accurately.Increasing the momentum term reduces the oscillation trend during deep learning training and improves the stability of the model prediction process.Experimental re-sults show that compared with the traditional BP neural network,the number of iterations of the improved model is reduced by 8,the accuracy of film thickness prediction is increased by 12.9%,and the average er-ror is reduced by 1.558 nm.The maximum error is controlled within 4 nm.

film thickness predictionphotovoltaic cellsneural networksdeep learningcolor depth value

郭建、黄颖驹

展开 >

广州城市理工学院机械工程学院,广州 510800

膜厚预测 光伏电池片 神经网络 深度学习 色深值

2022广东省普通高校特色创新人才类项目广州城市理工学院2022年度校级青年科研基金项目2023年广东省科技创新战略专项资金项目广州城市理工学院2023年度校级科研基金项目2024年广东省科技创新战略专项资金项目

2022KTSCX185K0222005pdjh2023b0778K0223002pdjh2024a528

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(10)