首页|基于改进遗传算法对机械臂最优时间轨迹规划

基于改进遗传算法对机械臂最优时间轨迹规划

扫码查看
针对传统工业机器人在轨迹规划过程中,运动耗时长、易陷入局部最优解的问题,提出一种基于改进自适应遗传算法对于6R机械臂轨迹优化算法.通过加入改进的自适应调节机制,自适应的去改变交叉概率和变异概率.首先,建立六自由度机械臂模型,采用改进型D-H参数法获得机器人连杆参数数据;其次,通过4-1-4 多项式插值的方法进行轨迹规划,以运行时间为优化目标,利用改进自适应遗传算法结合蚁群算法对运动轨迹进行优化;最后,通过目标函数解决运动学约束问题.通过MATLAB仿真实验验证相比于传统的遗传算法,该轨迹的运行时间从12.23 s减少到了9.05 s,整体运行轨迹时间缩短3.18 s,优化后的效率提高近26%.适应度提高1.73,证明该算法能够有效地加快轨迹的运行时间,提高了机械臂的工作效率.
Robot Time Trajectory Optimization Based on Improved Genetic Algorithm
In order to solve the problem of long motion time and easy to fall into local optimal solution in the trajectory planning process of traditional industrial robots,a trajectory optimization algorithm for 6R ro-botic arm based on improved adaptive genetic algorithm was proposed.By adding the improved adaptive adjustment mechanism,the crossover probability and mutation probability can be changed adaptively.First-ly,a 6-DOF manipulator model is established,and the improved D-H parameter method is used to obtain the parameters of the robot connecting rod.Secondly,the trajectory planning is carried out by 4-1-4 polyno-mial interpolation method.With the running time as the optimization goal,the motion trajectory is optimized by improved adaptive genetic algorithm and ant colony algorithm.Finally,the objective function is used to solve the kinematic constraint problem.The MATLAB simulation experiment verifies that compared with the traditional genetic algorithm,the running time of the trajectory is reduced from 12.23 s to 9.05 s,the o-verall running time is shortened by 3.18 s,and the efficiency after optimization is increased by nearly 26%.The fitness is increased by 1.73,which proves that the algorithm can effectively accelerate the run-ning time of the trajectory and improve the working efficiency of the robot arm.

genetic algorithmant colony algorithmmodified D-H methodtrajectory planningdegree of adaptability

郭北涛、金福鑫、张丽秀

展开 >

沈阳化工大学机械与动力工程学院,沈阳 110142

沈阳建筑大学交通与机械工程学院,沈阳 110168

遗传算法 蚁群算法 改进D-H法 轨迹规划 适应度

国家自然科学基金项目沈阳市科技计划项目

51375317F16-228-6-00

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(10)