首页|基于AdaBoost和分类树的贴片元件缺陷检测算法

基于AdaBoost和分类树的贴片元件缺陷检测算法

扫码查看
针对PCB上贴片元件缺陷检测准确率低、效率低和缺陷类型不全面的问题,设计了一种基于AdaBoost和分类树的贴片元件缺陷检测系统.该系统可检测芯片引脚和电阻缺陷.首先,对采集到的图像进行拼接、校正、元件定位和去噪操作;其次,对贴片元件进行区域划分并提取子区域的形状特征、灰度特征和纹理特征;然后,利用AdaBoost算法将每个特征视为弱分类器,选取最优特征迭代形成强分类器并通过信号函数进行输出,实现每个缺陷都有其对应的特征码;最后,通过查询分类树实现缺陷分类.实验结果表明,相比于传统的图像处理缺陷检测系统,所设计的系统在检测缺陷多样化、检测速度和准确率上均具有明显优势.
Defect Detection Algorithm for Patch Components Based on AdaBoost and Classification Tree
A PCB surface mount component defect detection system based on AdaBoost and decision trees was designed to address the problems of low accuracy,low efficiency,and incomplete defect types in tradi-tional detection systems.The system detects chip pin and resistor defects.The system first performs image stitching,correction,component positioning,and noise reduction on the collected images.Then,it divides the surface mount components into regions and extracts shape,grayscale,and texture features from each sub-region.The AdaBoost algorithm is used to treat each feature as a weak classifier,select the optimal fea-tures to form a strong classifier iteratively,and output a feature code for each defect through a signal func-tion.Finally,the defect classification is achieved by querying the decision tree.Experimental results show that compared with traditional image processing defect detection systems,the system designed in this paper has significant advantages in detecting diverse defects,detecting speed,and accuracy.

machine visionPCBimageprocessingAdaBoostclassification treedefect classification

陈韬、陆艺、李静伟

展开 >

中国计量大学计量测试工程学院,杭州 310018

杭州沃镭智能科技股份有限公司,杭州 310018

机器视觉 印刷电板 图像处理 AdaBoost 分类树 缺陷分类

浙江省"尖兵"计划项目

2023C01061

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(10)