首页|基于半监督并行门控CNN-LSTM的微铣削刀具磨损状态监测

基于半监督并行门控CNN-LSTM的微铣削刀具磨损状态监测

扫码查看
微铣削过程中主轴高转速和刀具小尺寸的特点,导致刀具磨损异常严重.为实现高精度和高效率的刀具磨损状态监测,提出了一种将小波去噪的半监督网络与改进并行门控网络相结合的监测方法.首先,采用小波软阈值函数去除噪声,降低半监督网络对无标签数据分类的误导程度;其次,采用有标签数据训练半监督网络提取特征,对无标签数据进行分类;最后,改进并行门控卷积神经网络-长短时记忆网络(CNN-LSTM)模型提取全局特征并额外增加模型表达能力.结果表明,通过小波去噪后的半监督网络能有效增加无标签数据的利用率;提出的改进并行门控CNN-LSTM模型,刀具磨损分类准确率到了93.61%,有效提高了刀具磨损状态监测的准确性和高效性.
Micro-Milling Tool Wear Condition Monitoring Based on Semi-Supervised Parallel Gated CNN-LSTM
In the process of micro milling,the characteristics of high spindle speed and small tool size lead to serious tool wear.In order to achieve high-precision and high-efficiency tool wear condition monitoring,a monitoring method combining semi-supervised network with wavelet denoising and improved parallel ga-ted network is proposed.Firstly,the wavelet soft threshold function is used to remove noise and reduce the misleading degree of semi-supervised network for unlabeled data classification.Secondly,the semi-super-vised method uses labeled data for training to extract features and classify unlabeled data.Finally,the paral-lel gated convolutional neural network-long short-term memory network(CNN-LSTM)model is improved to extract global features and increase the expression ability of the model.The results show that the semi-su-pervised network after wavelet denoising can effectively increase the utilization rate of unlabeled data;The improved parallel gated CNN-LSTM model proposed by has a tool wear classification accuracy of 93.61%,which effectively improves the accuracy and efficiency of tool wear condition monitoring.

tool wear condition monitoringwavelet de-noisingsemi-supervised networkparallel gated

吕鑫峰、郑刚、张旭

展开 >

上海应用技术大学上海物理气相沉积(PVD)超硬涂层及装备工程技术研究中心,上海 201418

上海大学机电工程与自动化学院,上海 200444

刀具磨损状态监测 小波去噪 半监督网络 并行门控

国家自然科学基金资助项目

51975344

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(10)