首页|基于改进PSO-SVM的薄壁件铆接质量检测

基于改进PSO-SVM的薄壁件铆接质量检测

扫码查看
针对传统铆接几何公差质量检测极易造成错检、漏检等问题,提出了基于改进PSO-SVM的铆接质量检测方法.采用惯性权重自适应调整的策略,并选择合适的学习因子,有效提高了检测准确性;针对小样本提出最小二乘SVM算法,提高计算速度获得最优解;利用改进PSO优化最小二乘SVM的惩罚因子参数值和核函数参数值.并以制孔和铆接后的 6061 铝合金板模拟飞机薄壁件铆接样本,使用搭配远心镜头的CCD相机采集图像并建立数据集,验证了方法的有效性.
Quality Inspection of Thin-Walled Parts Riveting Based on Improved PSO-SVM
Regarding the issues of missed and false detections in traditional riveting geometric tolerance quality inspection,a riveting quality inspection method based on an improved PSO-SVM is proposed.Utili-zing a strategy of self-adaptive adjustment of inertia weight and selecting appropriate learning factors can effectively improve detection accuracy.For small sample sizes,the least squares SVM algorithm is proposed to enhance computational speed and obtain the optimum solution.The improved PSO algorithm is employed to optimize the penalty factor parameter values and kernel function parameter values of the least squares SVM.Using 6061 aluminum alloy plates,which simulate aircraft thin-walled riveted samples after punching and riveting,images are obtained with a CCD camera equipped with a centrifugal lens and a dataset is es-tablished,thus verifying the effectiveness of the method.

particle swarm optimizationleast squares support vector machineinertia weight adaptive ad-justmenthole making and riveting quality inspection

郝伟光、李芳、闫俊伟、郝博

展开 >

沈阳理工大学信息科学与工程学院,沈阳 110159

东北大学航空动力装备振动及控制教育部重点实验室,沈阳 110819

粒子群优化 最小二乘支持向量机 惯性权重自适应调整 制孔及铆接质量检测

国家自然基金项目装备预研领域重点基金项目

6137308961409230125

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(10)