首页|一致性数字孪生驱动的行星齿轮箱故障诊断方法

一致性数字孪生驱动的行星齿轮箱故障诊断方法

扫码查看
鉴于实测数据的有限性及深度模型的数据依赖性,利用数字孪生技术仿真数据训练模型已成为趋势,确保虚实数据一致性仍是数字孪生驱动的健康监测与智能运维亟待突破的关键技术瓶颈.设计了一种数字孪生虚实数据一致性评价方法,并结合迁移学习的 1D卷积神经网络进行故障诊断.通过频域相似性、波形相似性和余弦相似度对数字孪生模型的仿真数据与实测数据进行多维评价,确定多传感器实时数据融合驱动的仿真数据具有较高一致性.为更有效地应用仿真数据,并降低其与实测数据的差异,提出一种仿真预训练与实测数据微调的故障诊断策略.此方法为数字孪生的迭代进化提供了理论支撑,并为复杂装备的健康监测与智能运维提供了新的技术路径.
Consistent Digital Twin-Driven Fault Diagnosis of Planetary Gearboxes
In view of the limited nature of real data and the data dependency of deep models,it has become a trend to utilize digital twin technology to simulate data to train models,and to ensure the consistency of real and virtual data is still a key technical bottleneck that needs to be broken through for digital twin-driven health monitoring and intelligent operation and maintenance.In this paper,a digital twin virtual-real data consistency evaluation method is designed and combined with 1D convolutional neural network of migration learning for fault diagnosis.First,the simulation data of the digital twin model and the measured data are e-valuated multidimensionally by frequency domain similarity,waveform similarity and cosine similarity,and it is determined that the simulation data driven by multi-sensor real-time data fusion has high consistency.In order to apply the simulation data more efficiently and downgrade its differences with the measured data,a fault diagnosis strategy with simulation pre-training and fine-tuning of the measured data is proposed.This method provides theoretical support for the iterative evolution of digital twins and a new technical path for health monitoring and intelligent operation and maintenance of complex equipment.

digital twinplanetary gearboxmultidimensional evaluationfault diagnosis

董美琪、孙显彬、刘伦明、孙艳玲、陈敖、贾新月

展开 >

青岛理工大学机械与汽车工程学院,青岛 266520

卡奥斯工业智能研究院(青岛)有限公司,青岛 266520

数字孪生 行星齿轮箱 多维评价 故障诊断

山东省自然科学基金项目山东省科技型中小企业创新能力提升项目

ZR2021ME0262021TSGC1045

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(10)