首页|基于YOLOv5和ConvNext的钢铁表面缺陷检测研究

基于YOLOv5和ConvNext的钢铁表面缺陷检测研究

扫码查看
为解决工业钢铁表面缺陷检测速度慢、准确度低问题,提出一种基于改进YOLOv5 网络的检测方法.在YOLOv5 网络的FPN特征金字塔模块中加入ECANet模块,以提高检测精度;利用K-Means算法在NEU-DET数据集上重新聚类,生成3 组新的先验框,降低网络损失;针对钢铁缺陷的小目标特征,将ConvNext网络应用到YOLOv5 的主干网络中,用ConvNext网络提取小目标缺陷特征,增强模型学习能力.实验结果表明,改进后的YOLOv5 模型与原YOLOv5 模型相比,mAP提升了3.84%,平均检测速率为36.9 frame/s,能够做到快速和准确的检测,满足实际应用需求.
Research on Steel Surface Defect Detection Based on YOLOv5 and ConvNext
In order to solve the problem of slow speed and low accuracy of surface defect detection of indus-trial steel,a detection method based on improved YOLOv5 network was proposed.The ECANet module is added to the FPN feature pyramid module of YOLOv5 network to improve detection precision;The K-Means algorithm is used to recluster the NEU-DET data set,generate three new sets of prior boxes,and reduce the network loss;Aiming at the small target features of steel defects,ConvNext network is applied to the back-bone network of YOLOv5,and ConvNext network is used to extract the small target defect features and en-hance the model learning ability.The experimental results show that compared with the original YOLOv5 model,the map of the improved YOLOv5 model is increased by 3.84%,and the average detection rate is 36.9 frame/s,which can achieve fast and accurate detection and meet the practical application requirements.

defect detectionK-Means algorithmConvNextECANetYOLO

李强强、皋军、邵星、王翠香

展开 >

盐城工学院 机械工程学院,盐城 224000

盐城工学院 信息工程学院,盐城 224000

缺陷检测 K-Means算法 ConvNext ECANet YOLO

国家自然科学基金项目国家自然科学基金项目教育部新一代信息技术创新项目盐城工学院研究生科研与实践创新计划项目盐城工学院研究生科研与实践创新计划项目

62076215615024112020ITA02057SJCX22_XZ035SJCX22_XY061

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(10)
  • 1