首页|改进的Q-learning蜂群算法求解置换流水车间调度问题

改进的Q-learning蜂群算法求解置换流水车间调度问题

扫码查看
针对置换流水车间调度问题,提出了一种基于改进的Q-learning算法的人工蜂群算法.该算法设计了一种改进的奖励函数作为人工蜂群算法的环境,根据奖励函数的优劣来判断下一代种群的寻优策略,并通过Q-learning智能选择人工蜂群算法的蜜源的更新维度数大小,根据选择的维度数大小对编码进行更新,提高了收敛速度和精度,最后使用不同规模的置换流水车间调度问题的实例来验证所提算法的性能,通过对标准实例的计算与其它算法对比,证明该算法的准确性.
Improved Q-learning Bee Colony Algorithm to Solve the Scheduling Problem of the Permutation Flow Shop
For the scheduling problem in permutation flow shop,an artificial bee colony algorithm based on an improved Q-learning algorithm is proposed.This algorithm designs an improved reward function as the environment for the artificial bee colony algorithm.The quality of the reward function is used to determine the optimization strategy for the next generation population.Through Q-learning,intelligent selection of the dimensionality size for updating the artificial bee colony algorithm's food sources is achieved.The selected dimensionality size is used to update the encoding,thereby improving the convergence speed and accuracy.Finally,instances of permutation flow shop scheduling problems of different scales are used to validate the performance of the proposed algorithm.Through computation on standard instances and comparison with other algorithms,the accuracy of the algorithm is demonstrated.

Q-learning algorithmartificial bee colony algorithmpermutation flow shop scheduling

杜利珍、宣自风、唐家琦、王鑫涛

展开 >

武汉纺织大学湖北省数字化纺织装备重点实验室,武汉 430200

Q-learning算法 人工蜂群算法 置换流水车间调度

国家重点研发计划项目

2019YFB1706300

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(10)