首页|融合数字孪生和GCN-LSTM的六足机器人故障诊断

融合数字孪生和GCN-LSTM的六足机器人故障诊断

扫码查看
针对六足机器人在封闭复杂环境工作时,存在运行状况实时监测困难、故障特征数据少、故障诊断精度低等问题,提出基于数字孪生和图卷积神经网络改进的长短时记忆神经网络(GCN-LSTM)的六足机器人故障诊断方法.首先,分析了六足机器人的动力学模型,并据此在CoppeliaSim仿真软件中构建机器人的高保真、高置信度孪生模型;其次,对数字孪生模型进行虚拟故障注入并确保机器人的安全性.在模拟故障注入下,通过孪生体控制物理机器人步态运动,获得各物理传感器的高置信度故障数据样本;最后,为充分挖掘传感器数据的空间关联和时间依赖性,融合GCN和LSTM实现故障精确分类.实验结果表明,与同类型的算法相比,GCN-LSTM的故障诊断精度较高;机器人数字孪生系统的高置信度故障数据与GCN-LSTM结合能够实现对机器人故障的准确诊断.
A Fault Diagnosis Method for Hexapod Robot Combining Digital Twin Technology with GCN-LSTM Framework
In order to solve the problems of difficult real-time monitoring,less fault characteristic data and low fault diagnosis accuracy when multi-legged robots working in a closed and complex environment,a fault diagnosis method of six-legged robots based on digital twin virtual data and GCN-LSTM,which hybridizes graph convolutional network (GCN) and long short term memory network (LSTM). First,the dynamics model of the hexapod robot is analyzed,and the high-fidelity and high-confidence twin model of the robot is constructed in CoppeliaSim simulation software. Second,virtual fault injection was applied to the digital twin model,ensuring the safety of the robot. Under simulated fault conditions,the digital twin model controlled the physical robot's gait,obtaining high-confidence fault data samples from each physical sensor. Finally,to fully exploit the spatial correlations and temporal dependencies in sensor data,GCN and LSTM were integrated to achieve precise fault classification. Experimental results show that GCN-LSTM has the highest fault diagnosis accuracy compared with other algorithms of the same type. The combination of high-confidence fault data from the robot's digital twin system with GCN-LSTM enables accurate diagnosis of robot faults.

digital twinfault diagnosisGCN-LSTMsix-legged robot

斯帅、杨永峰、唐凯豪、佃松宜、马丛俊

展开 >

四川大学电气工程学院,成都 610065

国网浙江省电力有限公司衢州供电公司,衢州 324000

数字孪生 故障诊断 GCN-LSTM 六足机器人

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(11)