首页|基于卷积神经网络的机器人铣削颤振识别

基于卷积神经网络的机器人铣削颤振识别

扫码查看
串联式工业机器人整体刚度较低,铣削加工过程中极易产生颤振,降低工件表面质量与尺寸精度.针对机器人铣削颤振识别问题,提出一种基于卷积神经网络的颤振识别方法.通过机器人铣削实验采集不同加工状态下的振动加速度信号,提取信号的功率谱熵差与均方根作为特征指标;采用特征指标构建表征机器人不同铣削状态的二维散点图像数据集.采用卷积神经网络算法构建机器人铣削状态智能识别模型,对机器人铣削状态进行辨识.为验证所提方法的有效性,与现有方法进行对比分析与验证.结果表明,基于卷积神经网络构建的识别模型能够有效辨识机器人铣削加工过程中的不同状态,其识别准确率可达95.10%,优于采用支持向量机构建的模型.
Robotic Milling Chatter Identification Based on the Convolutional Neural Network
Serial industrial robots have the characteristics of low stiffness and are prone to chatter during milling,reducing the surface quality and dimensional accuracy of the workpiece.To solve the problem of robotic milling chatter identification,a convolutional neural network based chatter identification method is proposed.Robotic milling experiments were carried out to collect the vibration acceleration signals under different machining conditions,and the power spectrum entropy difference and root mean square of the sig-nals were extracted as the characteristic matrix.Then two dimensional scatter image data sets representing different milling states of the robotic milling were constructed by the characteristic matrix.The convolution-al neural network algorithm is used to construct the intelligent chatter identification model of robotic milling.In order to verify the effectiveness of the proposed method,comparison analysis and verification are carried out with existing methods.The results show that the robotic chatter identification model based on convolution-al neural network can effectively identify different states in the robotic milling process,and its recognition ac-curacy can reaches 95.10%,which is superior to the model constructed by the support vector machine.

robotic millingchatterfeature extractionstate identificationconvolutional neural network

姚利诚、籍永建

展开 >

北京信息科技大学机电系统测控北京市重点实验室,北京 100192

北京信息科技大学 机电工程学院,北京 100192

北京信息科技大学 现代测控技术教育部重点实验室,北京 100192

机器人铣削 颤振 特征提取 状态识别 卷积神经网络

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(12)