首页|基于改进YOLACT的堆叠零件实例分割算法

基于改进YOLACT的堆叠零件实例分割算法

扫码查看
为了解决堆叠环境下零件实例分割精度差的问题,提出了一种改进YOLACT算法.通过在主干网络中C3和C4层引入多级特征融合与通道注意力机制模块(MLCA),优化了特征提取的精度.为了在保证图像同时获取多感受野信息,采用上下文特征金字塔模块(AC-FPN)结构替代传统FPN金字塔,获取更多感受野,以准确完成预测.通过自制堆叠零件数据集完成网络训练与实验.对比实验表明,改进后的YOLACT算法在未明显提升运行时间的基础上,相较原算法表现出更优的检测与分割效果.
Instance Segmentation of Cluttered Mechanical Parts Based on Improved YOLACT
In order to address the issue of poor instance segmentation accuracy for parts instances in a clut-tered environment,an improved YOLACT algorithm is proposed.Multi-level feature fusion and channel at-tention mechanism modules ( MLCA) are introduced into the C3 and C4 layers of the backbone network,optimizing the precision of feature extraction.At the same time,to ensure the image acquires multi-scale field-of-view information,an advanced contextual feature pyramid module ( AC-FPN) structure replaces the conventional FPN pyramid to capture broader receptive fields,facilitating accurate prediction.The net-work was trained and tested using a custom-made dataset of stacked parts.Comparative experiments demon-strate that the improved YOLACT algorithm,without significantly increasing the run time,exhibits superior detection and segmentation performance compared to the original algorithm.

cluttered partsinstance segmentationYOLACTMLCAAC-FPN

张笑尘、晁永生、李豪玉、周方圆、李学玮、王传钊

展开 >

新疆大学智能制造现代产业学院,乌鲁木齐 830017

堆叠零件 实例分割 YOLACT MLCA AC-FPN

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(12)