首页|基于改进YOLOv8的航空发动机叶片表面缺陷检测

基于改进YOLOv8的航空发动机叶片表面缺陷检测

扫码查看
针对航空发动机叶片表面缺陷的复杂性,检测效率和精度不高的问题,提出了一种改进的基于注意力机制的YOLOv8 s航空发动机叶片表面缺陷检测方法.通过将EIoU替换为CIoU作为算法的损失函数.在提高边界框回归速率和目标定位精度的同时,改善数据集中的质量不平衡问题.在主干特征网络(Backbone)中嵌入EMA注意力模块,以增强对关键特征的提取,提高模型的检测准确性.使用自建的航空发动机叶片数据集对网络进行训练和测试.试验结果表明,YOLOv8 s-EMA网络的平均检测精确度达到了98.7%.相较于Faster-RCNN和YOLOv5 s等目前主流的目标检测模型,平均检测精确度分别提高了2.1%和3.0%,FPS也有显著提升.证明了该方法在航空发动机叶片表面缺陷检测中具有更高的精度,取得了良好的检测效果.
Detection of Surface Defects on Aircraft Engine Blades Based on Improved YOLOv8
In response to the reflective nature and complex surface defects of aircraft engine blades,this pa-per proposes an improved aircraft engine blade surface defect detection method based on an attention mech-anism and enhanced YOLOv8s.By replacing EIoU with CIoU as the algorithm's loss function.Simultane-ously,improvements were made in enhancing the accuracy of boundary box regression and target localiza-tion,while addressing the issue of data quality imbalances.The integration of an EMA attention module within the main feature network ( Backbone ) aimed to amplify the extraction of crucial features and en-hance the model's detection accuracy.The network was trained and tested using a proprietary dataset of air-craft engine blades.Experimental results demonstrate that the average detection accuracy of the YOLOv8s-EMA network reached 98.7%.Compared to current mainstream target detection models such as Faster-RC-NN and YOLOv5s,the average detection accuracy improved by 2.1% and 3.0% respectively,with a sig-nificant increase in FPS.This evidence validates the method's higher precision in detecting surface defects on aircraft engine blades,achieving commendable detection results.

defect detectionbladesYOLOv8sEMA attention mechanismEIoU

李文龙、王欣威、慕丽

展开 >

沈阳理工大学机械工程学院,沈阳 110159

缺陷检测 叶片 YOLOv8 s EMA注意力机制 EIoU

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(12)