首页|纵向体检队列中的慢性病多病共存相关性分析方法研究

纵向体检队列中的慢性病多病共存相关性分析方法研究

扫码查看
目的 探究慢性疾病多病共存相关性分析方法的效果,为慢性疾病易发人群健康管理提供参考.方法 选取中国人民解放军西部战区医院信息科2006-2016年收集的个体连续多年的体检数据,建立体检数据的纵向队列,在纵向队列体检数据建模的基础上,考虑个体慢性共患疾病的"隐匿"发病特点,利用发病风险,基于混合效应模型构建一种数据驱动的慢性共患疾病相关性分析方法,分析非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)与共患病高尿酸血症(hyperuricemia,HUA)之间的关系,进一步阐述该方法在实际应用中的适用性和优势.结果 与一般混合效应模型相比,考虑共患疾病风险的模型的AIC和BIC值明显更低,风险评估更加准确,更为可信.结论 基于混合效应模型结合慢性疾病"潜在"风险构建的慢性共患疾病相关性分析方法能更准确、更贴合实际地描述慢性共患病之间的关系,值得推广应用.
Correlation Analysis Method Study of Chronic Disease and Multidisease Coexistence in Longitudinal Physical Examination Queue
Objective To explore effect of correlation analysis method for comorbidity of multiple diseases,to provide reference for the health management of population prone to chronic diseases.Methods The paper chose individual physical examination data based on consecutive years collected by the Information Department of the Western Theater Command Hospital of PLA from 2006 to 2016,and established longitudinal queue of physical examination data.Based on the modeling of longitudinal queue physical examination data,the paper constructed data-driven correlation analysis method for chronic comorbidities based on a mixed effect model,"hidden"incidence characteristics of individual chronic comorbiditiesandincidence risks,and analyzed relationship between non-alcoholic fatty liver disease(NAFLD)and comorbid hyperuricemia(HUA),and further elucidated applicability and advantages of the method in practical applications.ResultsThe model considering comorbidities risk had significantly lower AIC and BIC values than general mixed effect model,and the risk assessment was more accurate and credible.Conclusion Comorbidity analysis method can describe relationship between chronic comorbidities for chronic comorbidities based on the mixed effect model combined with the potential risk of chronic diseasesa ccurately and practically,which is worthy of promotion and application.

Disease correlation analysisLongitudinal examination queueRandom effect modelComorbidity of multiple diseases

余鹏

展开 >

西南交通大学数学学院,四川 成都 611756

疾病相关性分析 纵向体检队列 随机效应模型 多病共病

中央高校基本科研业务费专项中央高校基本科研业务费专项

SWJTU2682021Z TPY078

2024

智慧健康

智慧健康

ISSN:
年,卷(期):2024.10(9)
  • 13