首页|高光谱影像的近邻加权拉普拉斯降维方法

高光谱影像的近邻加权拉普拉斯降维方法

扫码查看
针对高光谱影像数据中存在信息冗余和非线性结构的现象,以及数据分布不均匀时拉普拉斯特征映射近邻点选择不恰当的问题,提出了一种基于Cam加权距离的拉普拉斯改进算法,用于高光谱影像数据降维以压缩数据量并提高分类精度.首先对波段分组去除奇异波段,然后用基于Cam加权距离的拉普拉斯特征映射算法对剩余数据降维,最后将结果输入最小距离分类器进行高光谱影像分类.通过Indiana Pines数据集进行验证,实验结果表明:与线性降维主成分分析法和非线性降维拉普拉斯特征映射相比,基于Cam加权距离的拉普拉斯特征映射算法分类精度更高.
Dimensionality Reduction for Hyperspectral Images Based on Cam Weighted Distance Laplacian Eigenmap
In consideration of the information redundancy and intrinsic nonlinearities, and the irrelevancy of Laplacian Eigenmap k-nearest neighbor selected for the uneven distribution of hyperspectral image data, this paper presents an improved LE algorithm based on Cam weighted distance for hyperspectral image dimensionality reduction to compact feature representation and improve the accuracy of classification.First, the band is grouped for the removal of singular band, then the Cam weighted distance Laplacian Eigenmap is used to reduce the remaining data dimension, and finally, the results are put into the minimum distance classifier for hyperspectral image classification.By verification with the Indiana Pines data set, the experimental results show that compared with linear dimensionality reduction method of PCA and nonlinear method of LE, Cam weighted distance Laplacian Eigenmap algorithm gets higher classification accuracy.

Cam weighted distanceLaplacian eigenmap (LE)nonlinear dimensionality reductionband selection

路易、郭静、于少波

展开 >

装备学院 研究生管理大队, 北京 101416

装备学院 复杂电子系统仿真实验室, 北京 101416

Cam加权距离 拉普拉斯特征映射 非线性降维 波段选择

部委级资助项目

2017

装备学院学报
装备学院科研部

装备学院学报

CSTPCD
影响因子:0.441
ISSN:2095-3828
年,卷(期):2017.28(3)
  • 2
  • 6