首页|基于无创生理参数的脓毒症早期筛查模型对老年患者诊断准确性的研究

基于无创生理参数的脓毒症早期筛查模型对老年患者诊断准确性的研究

扫码查看
目的 探索基于无创生理参数的脓毒症筛查模型对老年患者的诊断准确性,并与全身炎症反应综合征(SIRS)评分和快速序贯器官衰竭评分(qSOFA)进行比较.方法 回顾性研究重症监护医疗信息数据库Ⅳ(MIMIC-Ⅳ)中的成年感染患者,根据是否存在脓毒症分为脓毒症组和非脓毒症组.采集患者基线数据,记录患者预后,计算入重症监护病房(ICU)24 h的SIRS评分和qSOFA评分,将单因素分析中具有统计学差异的生理参数包括呼吸频率、心率、意识、体温、收缩压和尿量纳入多因素Logistic回归模型.计算回归模型筛查脓毒症的特异性和敏感性,绘制受试者工作特征曲线(ROC),并与SIRS评分与qSOFA评分比较ROC曲线下面积(AUC).分别将老年患者和中青年患者数据纳入模型,计算预测准确性.结果 共筛查53 150份ICU住院记录,纳入24 h内感染或疑似感染患者23 681例,其中脓毒症组患者18 277例,其28 d病死率高于非脓毒症患者(13.5%比5.1%,x2=285.131,P<0.001).两组患者24 h基线数据心率、呼吸频率、体温、意识状态、24 h尿量、收缩压等差异均有统计学意义(均P<0.001),将以上变量纳入多因素回归得到回归模型:∑βiXi=2.055+0.285(体温:0/1)+0.172(呼吸频率:0/1)+0.073(心率:0/1)+1.204(意识改变:0/1)-0.022(收缩压)+0.227(尿量分级:0/1/2),P=1/[1+EXP(-∑βiXi)].回归模型诊断中青年患者脓毒症 ROC 分析中的 AUC 为 0.726(95%CI:0.718~0.735),大于 SIRS 评分的 0.585(95%CI:0.576~0.595)和 qSOFA 评分的 0.676(95%CI:0.667~0.685)(均 P<0.001).回归模型诊断老年患者脓毒症ROC分析中的AUC为0.671(95%CI:0.663~0.679),大于SIRS评分的0.572(95%CI:0.563~0.580)和 qSOFA 评分的 0.631(95%CI:0.623~0.639)(均 P<0.001).结论 采集无创生理参数构建的脓毒症早期筛查模型准确性优于SIRS和qSOFA评分,但应用于老年患者时,其准确性不及中青年患者,仍需要进一步优化.
Study on the diagnostic accuracy of elderly patients with early sepsis screening model based on non-invasive physiological parameters
Objective To evaluate the diagnostic accuracy of a noninvasive physiological parameter-based early sepsis screening model for elderly patients in comparison to the systemic inflammatory response syndrome(SIRS)and quick sequential organ failure assessment(qSOFA)scores.Methods A retrospective study was conducted using data from the Medical Information Mart for Intensive Care Ⅳ(MIMIC-Ⅳ)database.The study focused on patients who were admitted to the intensive care unit(ICU)within 24 hours and were categorized into septic and non-septic groups based on the presence or absence of sepsis.Baseline data and patient outcomes were recorded.Additionally,the SIRS score and qSOFA scores within 24 hours of ICU admission were calculated.Physiological parameters that showed statistical significance in the univariate analysis included respiratory rate,heart rate,level of consciousness,body temperature,systolic blood pressure,and urine output.These parameters were then included in Logistic regression models.The specificity and sensitivity of the regression model for sepsis screening were calculated,and receiver operating characteristic(ROC)curves were plotted.The areas under the ROC curves(AUCs)of the screening model,SIRS,and qSOFA scoring systems were compared.Results A total of 53 150 ICU hospitalization records were screened,and 23 681 patients with infection or suspected infection within 24 hours were included.Among them,18 277 patients had sepsis.The 28-day mortality rate for septic patients was higher compared to non-septic patients(13.5%vs.5.1%,x2=285.131,P<0.001).The baseline data within 24 hours showed significant differences between the two groups in terms of heart rate,respiratory rate,body temperature,state of consciousness,24-hour urine output,and systolic blood pressure(all P<0.001).These variables were included in the regression equation:∑βiXi=2.055+0.285(temperature:0/1)+0.172(respiratory rate:0/1)+0.073(heart rate:0/1)+1.204(mental status:0/1)-0.022(systolic blood pressure)+0.227(classification of urine output:0/1/2),P=1/[1+EXP(-∑βiXi)].The regression model diagnosed sepsis ROC area in young and middle-aged patients as 0.726(95%CI:0.718 to 0.735),which was significantly higher than the SIRS score(0.585,95%CI:0.576 to 0.595)and the qSOFA score(0.676,95%CI:0.667 to 0.685)(both P<0.001).In elderly patients,the regression model diagnosed sepsis ROC area as 0.671(95%CI:0.663 to 0.679),which was also significantly higher than the SIRS score(0.572,95%CI:0.563 to 0.580)and the qSOFA score(0.631,95%CI:0.623 to 0.639)(both P<0.001).Conclusions The early sepsis diagnosis model,which utilizes noninvasive physiological parameters,has shown higher accuracy when compared to the SIRS and qSOFA scores.However,it is important to note that its accuracy is lower in elderly patients as compared to young and middle-aged patients.This indicates the necessity for further optimization of the model in order to improve its performance in diagnosing sepsis in the elderly.

SepsisSystemic Inflammatory Response SyndromeLogistic model

刘韬滔、刘洋、王和、施红

展开 >

北京医院重症医学科 国家老年医学中心 中国医学科学院老年医学研究院,北京 100730

北京医院老年医学科 国家老年医学中心 中国医学科学院老年医学研究院,北京 100730

北京医院呼吸与危重症医学科 国家老年医学中心 中国医学科学院老年医学研究院,北京 100730

脓毒症 全身炎症反应综合征 Logistic模型

国家重点研发计划

2020YFC2009000

2024

中华老年医学杂志
中华医学会

中华老年医学杂志

CSTPCD北大核心
影响因子:1.606
ISSN:0254-9026
年,卷(期):2024.43(5)
  • 28