首页|社区和住院老年慢病患者肌少症风险预测模型的构建

社区和住院老年慢病患者肌少症风险预测模型的构建

扫码查看
目的 分析社区和住院老年慢病患者肌少症的影响因素,建立肌少症风险预测模型.方法 于2020年3月至2022年3月募集居住于江苏省南京市某社区251例老年人、以及江苏省人民医院老年医学科住院患者152例,共计403例慢病患者作为研究对象.采用一般资料调查、血清标本收集、简易营养评估量表、简易精神状态检查量表、老年人抑郁量表进行评估.采用二元Logistic回归分析确定影响因素,构建肌少症风险预测模型,并通过列线图展示,使用受试者工作特征(ROC)曲线及曲线下面积(AUC)评价模型的区分度.结果 社区慢病患者肌少症患病率为4.0%(10/251),住院慢病患者肌少症患病率为36.2%(55/152).二分类Logistic回归分析结果显示,住院(OR=14.391、95%CI:6.284~32.955、P<0.001)、男性(OR=3.321、95%CI:1.587~6.950、P=0.001)、较低的低密度脂蛋白胆固醇(OR=2.542、95%CI:1.160~5.572、P=0.020)、认知功能障碍(OR=2.654、95%CI:1.269~5.550、P=0.010)、用药种类≥4 种(OR=2.328、95%CJ:1.952~5.689、P=0.044)是发生肌少症的独立影响因素.基于以上危险因素绘制了肌少症风险预测模型的列线图,预测模型的AUC为0.860(95%CI:0.815~0.912),灵敏度为0.831,特异性为0.760.结论 老年慢病患者肌少症患病率较高,基于是否住院、性别、低密度脂蛋白胆固醇水平、认知功能、用药种类构建的风险预测模型对于肌少症的预测具有一定的价值,为肌少症的早期筛查和干预提供依据.
Construction of a prediction model for the risk of sarcopenia in community and hospitalized elderly patients with chronic diseases
Objective To analyze the factors influencing sarcopenia in older patients with chronic diseases,both in community settings and hospitals,and to develop a risk prediction model for sarcopenia.Methods We recruited a total of 403 older adults with chronic diseases,consisting of 251 individuals from a community in Nanjing,Jiangsu Province,and 152 hospitalized patients from the Department of Geriatrics at Jiangsu Province Hospital.Assessments were conducted using a general information questionnaire,serum sample collection,the mini nutritional assessment-short form(MNA-SF),the mini-mental state examination(MMSE),and the geriatric depression scale(GDS).Binary Logistic regression analysis was employed to identify influencing factors and to construct a risk prediction model for sarcopenia,which was illustrated using a nomogram.The model's discrimination was evaluated using the receiver operating characteristic(ROC)curve and the area under the curve(AUC).Results The prevalence of sarcopenia among community-dwelling older adults with chronic conditions was found to be 4.0%(10/251).In contrast,the prevalence in hospitalized older adults with chronic conditions was significantly higher at 36.2%(55/152).Binary Logistic regression analysis identified several independent risk factors for sarcopenia,including hospitalization(OR=14.391、95%CI:6.284-32.955、P<0.001),male gender(OR=3.321、95%CI:1.587-6.950、P=0.001),lower low-density lipoprotein cholesterol(LDL-C)levels(OR=2.542、95%CI:1.160-5.572、P=0.020),cognitive impairment(OR=2.654、95%CI:1.269-5.550、P=0.010),and the use of four or more types of medication(OR=2.328、95%CI:1.952-5.689、P=0.044).Based on these risk factors,a nomogram was developed as a predictive model for assessing sarcopenia risk.The AUC for this prediction model was 0.860(95%CI:0.815-0.912),indicating a sensitivity of 0.831 and a specificity of 0.760.Conclusions The incidence of sarcopenia is notably high among older patients with chronic diseases.A risk prediction model that incorporates factors such as hospitalization history,gender,LDL-C levels,cognitive function,and types of medication demonstrates significant potential for predicting sarcopenia.This model serves as a valuable foundation for the early screening and intervention of sarcopenia.

SarcopeniaChronic diseaseCommunityInpatientsRisk factor

佟蔷薇、王潇、俞沛文、俞静、盛云露、赵馨、刘娟

展开 >

南京医科大学第一附属医院/江苏省人民医院老年内分泌科,南京 210029

南京医科大学第一附属医院/江苏省人民医院健康管理中心,南京 210029

肌少症 慢性病 社区 住院患者 风险因素

2024

中华老年医学杂志
中华医学会

中华老年医学杂志

CSTPCD北大核心
影响因子:1.606
ISSN:0254-9026
年,卷(期):2024.43(11)