首页|核函数logistic回归模型在全基因组关联研究中的应用

核函数logistic回归模型在全基因组关联研究中的应用

扫码查看
[导读]探讨基于基因水平的核函数logistic回归模型及其在全基因组关联研究中的应用.以全基因组关联研究模拟数据为例,介绍核函数logistic回归模型在基因水平检测遗传变异与复杂性疾病之间关联的分析策略.模拟结果表明,在所有已知基因检验结果中致病位点所在基因假设检验的P值最小.结果提示基于基因水平的核函数logistic回归模型能够充分提取和综合基因中多个遗传突变位点信息,降低统计学检验的自由度,同时还能够控制多种协变量因素和交互作用,在检测致病基因与疾病关联时具有一定的效能.
Application of gene-based logistic kernel-machine regression model on studies related to the genome-wide association
[Introduction] To explore the gene-based logistic kemel-machine regression model and its application in genome-wide association study (GWAS).Using the simulated genome-wide singlenucleotide polymorphism (SNPs) genotypes data,we proposed a practical statistical analysis strategynamed ‘ the logistic kernel-machine regression model',based on the gene levels to assess the association between genetic variations and complex diseases.The results from simulation showed that the P value of genes in related diseases was the smallest among all the genes.The results of simulation indicated that not only it could borrow information from different SNPs that were grouped in genes and reducing the degree of freedom through hypothesis testing,but could also incorporate the covariate effects and the complex SNPs interactions.The gene-based logistic kernel-machine regression model seemed to have certain statistical power for testing the association between genetic genes and diseases in GWAS.

Kernel functionLogistic regressionGenome-wide association study

沃红梅、易洪刚、潘红星、唐少文、赵杨、陈峰

展开 >

211166 南京医科大学公共卫生学院流行病与卫生统计学系

江苏省疾病预防控制中心

核函数 Logistic回归 全基因组关联研究

国家自然科学基金国家自然科学基金国家自然科学基金江苏省高校自然科学研究重大项目高等学校博士学科点专项科研基金江苏高校优势学科建设工程项目

81202283810723893090123210KJA33003420113234110002

2013

中华流行病学杂志
中华医学会

中华流行病学杂志

CSTPCDCSCD北大核心
影响因子:1.985
ISSN:0254-6450
年,卷(期):2013.34(6)
  • 1