首页|血液学指标对前列腺特异性抗原"灰区"前列腺癌的诊断价值

血液学指标对前列腺特异性抗原"灰区"前列腺癌的诊断价值

扫码查看
目的:评价血液学指标对PSA 4~10 µg/L初诊前列腺癌(PCa)患者的诊断价值并构建危险分组模型.方法:回顾性分析2010年3月至2021年4月于徐州医科大学附属医院首次行前列腺穿刺活检且前列腺特异性抗原(PSA)为4~10μg/L的患者资料,依据穿刺病理分为PCa组和非PCa组,比较两组临床资料的差异.进行单因素及多因素Logistic回归分析,筛选预测PCa的独立危险因素,构建预测模型并评估其效能.结果:本研究共纳入患者415例,PCa组107例(25.8%),非PCa组308例(74.2%).与非PCa组相比,PCa组的年龄、中性粒细胞与淋巴细胞比值、血小板与淋巴细胞比值、系统免疫炎症指数(SII)、红细胞分布宽度、胱抑素C(CysC)水平较高(P均<0.05),而红细胞计数、血红蛋白、游离/总PSA(f/tPSA)水平较低(P均<0.05).多因素Logistic回归分析显示年龄、f/tPSA、SII、CysC是预测PCa的独立危险因素(P<0.05).利用上述危险因素构建5个预测模型,纳入4个指标(f/tPSA+年龄+SII+CysC)的模型的受试者工作特征曲线下面积(AUC)为0.745(95%CI:0.694~0.796)优于其他模型(P<0.05).依据诺模图评分构建PCa危险分组模型,AUC为0.727(95%CI:0.650~0.804),与PI-RADS评分相比(AUC:0.734,95%CI:0.658~0.811),两者总体诊断预测效能相当,但与PI-RADS<3低分组相比(22.2%),新模型低危组患者比例更高(39.4%).结论:血液学指标SII、CysC是预测"灰区"PCa的独立危险因素,与年龄、f/tPSA联合构建的危险分组模型可显著提高诊断PCa的效能.构建的危险分组模型与PI-RADS评分的诊断效能相当,但低危组患者比例更高,有利于医生更准确的进行PCa的筛查、减少"灰区"患者的过度活检.
Diagnostic value of hematological parameters for prostate cancer in patients with gray-zone prostate-specific antigen levels
Objective:To evaluate the diagnostic value of hematological parameters for PCa with prostate-specific antigen(PSA)of 4-10 μg/L and construct a risk-stratification model with these parameters.Methods:We retrospectively analyzed the da-ta on the males undergoing the initial prostatic biopsy in the Affiliated Hospital of Xuzhou Medical University with PSA of 4-10 μg/L from March 2010 to April 2021.According to the results of biopsy,we classified the patients into a PCa and a non-PCa group,and compared the hematological parameters between the two groups.We performed univariate and multivariate logistic regression analyses,identified the independent risk factors for PCa,constructed a risk-stratification model for the prediction of PCa and evaluated its effi-ciency.Results:A total of 415 cases were included in this study,107(25.8%)in the PCa and 308(74.2%)in the non-PCa group.Compared with the non-PCa males,the PCa patients showed a significantly older age,higher ratios of neutrophil to lymphocyte and platelet to lymphocyte,systemic immune-inflammation index(SII),red blood cell distribution width and cystatin C(CysC)level(all P<0.05),but lower red blood cell count and hemoglobin and free/total PSA(f/tPSA)levels(all P<0.05).Multivariate logis-tic regression analysis indicated that age,f/tPSA,SII and CysC were independent risk factors for the prediction of PCa(all P<0.05).Five prediction models were constructed based on the above risk factors,and the area under the ROC curve(AUC)of the four-parameter(age+f/tPSA+SII+CysC)model was 0.745(95%CI:0.694-0.796),significantly higher than those of the other mod-els(P<0.05).A risk-stratification model(low-,intermediate-,and high-risk)was also constructed based on the total nomogram scores,which showed a comparable performance to that of the Prostate Imaging Reporting and Data System(PI-RADS)for the predic-tion of PCa(AUC:0.727[95%CI:0.650-0.804]vs 0.734[95%CI:0.658-0.811]).However,the prediction rate by the risk-stratification model was evidently higher in the low-risk males than in those with low PI-RADS scores(1-2)(39.4%vs 22.2%).Conclusion:SII and CysC are independent risk factors for the prediction of PCa in patients with gray-zone PSA levels.The risk-stratification model based on age,SII,CysC and f/tPSA is comparable to PI-RADS in the diagnostic efficiency of PCa,with an even higher prediction rate in low-risk patients than in those with low PI-RADS scores,and contributive to precision screening and reduction of excessive biopsies in the diagnosis of PCa with gray-zone PSA.

prostate cancerprediction modelprostate-specific antigensystemic immune-inflammation indexcystatin C

葛鹏、郑玉欣、严子荣、李亮、李望、王军起

展开 >

徐州医科大学附属医院泌尿外科,江苏徐州 221002

徐州医科大学第二附属医院泌尿外科,江苏徐州 221006

前列腺癌 预测模型 前列腺特异性抗原 全身免疫炎症指数 胱抑素C

徐州市第二轮医学领军人才培养项目2022年度徐州医科大学附属医院医疗新技术项目徐州医科大学科技园"创新创业项目"

XWRCHT20210027CXCYHZZ2022002

2024

中华男科学杂志
南京军区南京总医院

中华男科学杂志

CSTPCD
影响因子:1.052
ISSN:1009-3591
年,卷(期):2024.30(8)