首页|基于GBDT算法的吉林省玉米产量预测模型研究

基于GBDT算法的吉林省玉米产量预测模型研究

扫码查看
玉米是我国种植面积最广、产量最高、食用最多的3种主要农作物之一,掌握科学预测玉米产量的技术,可以为农业的种植规划、粮食储存加工、市场调控提供技术支持.该文兼顾气象因素和土壤因素,建立BP神经网络模型、RBF径向基神经网络模型、GBDT梯度提升决策树模型,对吉林省各县市玉米产量进行回归分析,对比分析其误差.实验结果中,GBDT模型预测的产量和真实产量间的拟合程度较高,R2达到0.92,可以在吉林省各县市玉米产量预测中表现出较好的效果.结果表明该模型对吉林省40个县市玉米产量进行预测的可行性,数据易于获取,能够帮助政府农业部门制定相关政策和方针指导生产.
Corn is one of the three main crops with the widest planting area,the highest yield and the most eaten in China.Mastering the technology of scientific prediction of corn yield can provide technical support for agricultural planting planning,grain storage and processing,as well as market regulation.Taking into account meteorological factors and soil factors,this paper establishes BP neural network model,RBF radial basis neural network model,and GBDT gradient lifting decision tree model;then,the paper makes a regression analysis of corn yield in various counties and cities of Jilin Province,and a comparative analysis of their errors.In the experimental results,the fitting degree between the predicted yield and the real yield of GBDT model is high,R2 is up to 0.92,which can show a good effect in the prediction of corn yield in various counties and cities of Jilin Province.The results show that the model is feasible to predict the corn yield of 40 counties and cities in Jilin Province,and the data are easy to obtain,thereby can guide the agricultural departments of the government to formulate relevant policies and guidelines to guide production.

corn yieldGBDTforecasting modelmeteorological factorsregression analysis

徐子曦、唐友、钟闻宇、韩烨、毕春光、李明亮

展开 >

吉林农业大学信息技术学院,长春 130118

吉林农业科技学院电气与信息工程学院,吉林吉林 132101

吉林化工学院信息与控制工程学院,吉林吉林 132022

玉米产量 GBDT 预测模型 气象因素 回归分析

吉林省科技发展计划

YDZJ202201ZYTS692

2024

智慧农业导刊

智慧农业导刊

ISSN:
年,卷(期):2024.4(2)
  • 4