首页|基于改进YOLOv7的高垄草莓成熟度实时检测研究

基于改进YOLOv7的高垄草莓成熟度实时检测研究

扫码查看
针对光照、遮挡、果实密集以及分布不均衡等复杂环境造成草莓识别不准确问题,该文提出一种基于YOLOv7 的改进模型为YOLOv7-SCC,制作草莓样本数据集建立真实采摘的复杂环境数据,首先,使用轻量级特征提取网络ShuffleNetv2 替换YOLOv7主干网络,实现轻量化的同时有效减少模型参数量;其次,引入CBAM注意力机制模块,从而增强特征网络对草莓区域的识别;最后,选用内容感知特征重组(CARAFE)上采样来扩展特征融合网络中的感受野并充分利用语义信息.经实验,改进后的模型参数量降低59%,浮点数降低 68.2%,准确率为 99.6%.结果证明,改进后的YOLOv7-SCC可以实现草莓成熟度的准确识别,同时保持高精度,使其成为与其他算法相比更适合高垄草莓成熟度检测的选择.
Aiming at the problem of inaccurate strawberry identification caused by complex environments such as light,occlusion,dense fruits and uneven distribution,this paper proposes an improved model based on YOLOv7 to YOLOv7-SCC to create a strawberry sample dataset to establish real picking complex environment data.First,use ShuffleNetv2 to replace the YOLOv7 backbone network to achieve lightweight and effectively reduce the amount of model parameters;Secondly,the CBAM attention mechanism module is introduced to enhance the recognition of strawberry areas by the feature network;finally,Content-Aware ReAssembly of FEatures(CARAFE)upsampling is selected to expand the receptive fields in the feature fusion network and make full use of semantic information.After experiments,the parameter quantity of the improved model is reduced by 59%,the floating point number is reduced by 68.2%,and the accuracy rate is 99.6%.The results proved that the improved YOLOv7-SCC can accurately identify strawberry ripeness while maintaining high accuracy,making it a more suitable choice for high-ridge strawberry ripeness detection than other algorithms.

high-ridge strawberrymaturity testYOLOv7ShuffleNetv2CBAMCARAFE

吴仁愿、王圆梦、陈心怡、唐文超、赵家国、王双丽

展开 >

安徽理工大学 煤炭安全精准开采国家地方联合工程研究中心,安徽 淮南 232001

安徽理工大学 人工智能学院,安徽 淮南 232001

高垄草莓 成熟度检测 YOLOv7 ShuffleNetv2 CBAM CARAFE

2024

智慧农业导刊

智慧农业导刊

ISSN:
年,卷(期):2024.4(21)