首页|基于深度学习的农作物健康检测实现

基于深度学习的农作物健康检测实现

扫码查看
为帮助人们解决农作物健康问题,提升农业生产的效率和质量,该研究基于ResNet50与YOLOv5深度学习算法,设计并实现一个应用于农业领域的多模块图像检测系统,并使用PyQt5技术进行可视化.通过数据增强、学习率优化、超参数调整以及迁移学习操作,实现ResNet50与YOLOv5模型对农作物病虫害和健康的准确检测;验证结果表明该系统在病害识别、缺水识别、缺微量元素识别、毒性植株识别和杂草检测等模块均达到良好的识别水平,证明该系统的可行性与实用性.
In order to help people solve crop health problems and improve the efficiency and quality of agricultural production,this research designed and implemented a multi-module image detection system for agricultural field based on ResNet50 and YOLOv5 deep learning algorithms,and used PyQt5 technology for visualization. Through data enhancement,learning rate optimiza-tion,hyperparameter adjustment and transfer learning operations,the ResNet50 and YOLOv5 models have achieved accurate detec-tion of crop pests,diseases and health;the verification results show that the system has achieved a good recognition level in disease identification,water shortage identification,trace element deficiency identification,toxic plant identification and weed detection mod-ules,which proves the feasibility and practicality of the system.

deep learningResNet50YOLOv5disease identificationweed detection

吴霆、朱龙辉、李蕾、王皓勇、陈阜昌

展开 >

仲恺农业工程学院,广州 510225

深度学习 ResNet50 YOLOv5 病害识别 杂草检测

2024

智慧农业导刊

智慧农业导刊

ISSN:
年,卷(期):2024.4(24)