首页|I-DCGAN and TOPSIS-IFP:A simulation generation model for radiographic flaw detection images in light alloy castings and an algorithm for quality evaluation of generated images

I-DCGAN and TOPSIS-IFP:A simulation generation model for radiographic flaw detection images in light alloy castings and an algorithm for quality evaluation of generated images

扫码查看
The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks.

light alloy castingflaw detection imagegeneratordiscriminatorcomprehensive evaluation index

Ming-jun Hou、Hao Dong、Xiao-yuan Ji、Wen-bing Zou、Xiang-sheng Xia、Meng Li、Ya-jun Yin、Bao-hui Li、Qiang Chen、Jian-xin Zhou

展开 >

State Key Laboratory of Materials Processing and Die & Mould Technology,Huazhong University of Science and Technology,Wuhan 430074,China

Xinjiang Technology(Jiangsu)Co.,Ltd.,Nantong 226100,Jiangsu,China

Southwest Technique and Engineering Research Institute,Chongqing 400039,China

Shanghai Spaceflight Precision Machinery Institute,Shanghai 201600,China

展开 >

国家重点研发计划国家自然科学基金国家自然科学基金国家自然科学基金

2020YFB1710100522753375209004251905188

2024

中国铸造
沈阳铸造研究所

中国铸造

CSTPCDEI
影响因子:0.299
ISSN:1672-6421
年,卷(期):2024.21(3)
  • 26