首页|基于高光谱成像技术对菜心种子霉变的识别

基于高光谱成像技术对菜心种子霉变的识别

扫码查看
为了鉴别健康与霉变菜心种子,本研究通过高光谱成像技术获得健康与霉变菜心种子光谱,建立判别模型.基于原始光谱和9种预处理后光谱建立支持向量机判别(SVM-DA)模型,发现基于一阶导数预处理后光谱的模型表现最出色,建模集和预测集的准确率分别为95.87%和95.74%.为了去除冗余或不必要的信息,采用遗传算法(GA)对原始光谱和各种预处理后光谱进行波段筛选,并再次建立SVM-DA模型,在这些模型中,FD-GA-SVM-DA模型性能最优,建模集和预测集准确率分别达97.71%和96.81%.研究表明,基于高光谱技术鉴别健康和霉变菜心种子具有可行性.
Identification of Mildew in Brassica rapa var.chinensis Seeds Based on Hyperspectral Imaging Technology
In order to distinguish healthy and mildewed Brassica rapa var.chinensis seeds,the spectra of healthy and mildewed Brassica rapa var.chinensis seeds were obtained by hyperspectral imaging technology,and the discriminant model was established.Support vector machine discriminant(SVM-DA)model was established based on original spectra and 9 kinds of pre-treated spectra.It was found that the model based on Firstderivative pre-treated spectra performed best,and the accuracy of modeling set and prediction set were 95.87%and 95.74%,respectively.In order to remove redundant or unnecessary information,genetic algorithm(GA)was used to screen the bands of the original spectra and various pre-processed spectra,and SVM-DA model was established again.Among these models,FD-GA-SVM-DA model had the best performance,and the accuracy of modeling set and prediction set reached 97.71%and 96.81%,respectively.In conclusion,it was feasible to identify healthy and mildewed Brassica rapa var.chinensis seeds based on hyperspectral technique.

hyperspectral imaging technologyBrassica rapa var.chinensis seedsmildewSVM-DA

余展旺、殷海、何曼文、周理华、谢百亨、熊征、黄富荣

展开 >

深圳技师学院应用生物学院,广东深圳 518000

暨南大学物理与光电工程学院,广州 510000

广东现代农业装备研究所,广州 510000

高光谱成像技术 菜心种子 霉变 支持向量机判别模型

广州市重点领域研发计划农业和社会发展科技项目

202103000095

2024

种子
贵州省种子管理站 贵州省种子学会 中国种子协会

种子

CSTPCD北大核心
影响因子:0.502
ISSN:1001-4705
年,卷(期):2024.43(8)