首页|基于列线图模型对慢性乙型肝炎合并肝脏脂肪变性患者并发晚期肝纤维化的临床预测

基于列线图模型对慢性乙型肝炎合并肝脏脂肪变性患者并发晚期肝纤维化的临床预测

扫码查看
目的 探讨慢性乙型肝炎(CHB)合并肝脏脂肪变性患者并发晚期肝纤维化(S3~S4)的独立危险因素,构建及验证列线图风险预测模型.方法 选取 2008 年 8 月至 2020 年 12 月在中山大学附属第三医院就诊并行经皮肝脏穿刺活检的439例未经抗病毒治疗的CHB合并肝脏脂肪变性患者作为研究对象,按 2∶1 随机分为训练组 293 例和验证组 146 例.采用logistic回归筛选出晚期纤维化的相关危险因素并构建列线图风险预测模型.结果 logistic 回归分析显示血小板(OR=0.987,P=0.003)、凝血酶原时间(OR=1.952,P=0.011)、球蛋白(OR=1.260,P=0.001)是晚期纤维化的独立危险因素.列线图风险预测模型在训练组中预测晚期纤维化的曲线下面积为0.866,显著优于天冬氨酸转氨酶和血小板比率指数(0.782,P=0.017)、γ-谷氨酰转肽酶/血小板比值(0.753,P=0.004)、肝纤维化4 因子指数(0.780,P=0.024)、非酒精性脂肪肝纤维化评分(0.737,P<0.001)、BARD评分(0.595,P<0.005)模型;在验证组中也得到了类似的结果(P<0.05).校准曲线和决策曲线显示列线图模型具有较高的一致性和临床净收益.结论 本研究基于CHB合并肝脏脂肪变性的晚期肝纤维化患者的独立危险因素构建了列线图风险预测模型,经验证,该模型具有较高的预测效能、一致性和临床净收益.
Nomogram model-based clinical prediction of advanced hepatic fibrosis in patients with chronic hepatitis B complicated by hepatic steatosis
Objective To identify the independent risk factors associated with advanced fibrosis(S3-S4)in patients suffering from chronic hepatitis B(CHB)complicated with hepatic steatosis,and to develop and validate a nomogram risk prediction model.Methods A total of 439 treatment-naïve CHB patients who had hepatic steatosis and underwent liver biopsy in the Third Affiliated Hospital of Sun Yat-sen University between August 2008 and December 2020 were recruited as research objects.These patients were then randomly allocated at a 2∶1 ratio into the training set(n=293)and the validation set(n=146).Logistic regression was used to identify the risk factors of advanced fibrosis.A nomogram prediction model was subsequently created.Results Logistic regression analysis revealed that platelet(OR=0.987,P=0.003),prothrombin time(OR=1.952,P=0.011),and globulin(OR=1.260,P=0.001)were the independent risk factors for advanced fibrosis.The area under the receiver operating characteristic(ROC)curve for the proposed nomogram model in the training group,which predicted advanced fibrosis,was noted to be 0.866.This was considerably higher than the aspartate aminotransferase-to-platelet ratio index(0.782,P=0.017),gamma-glutamyl transpeptidase-to-platelet ratio(0.753,P=0.004),fibrosis-4 score(0.780,P=0.024),non-alcoholic fatty liver disease fibrosis score(0.737,P<0.001),and BARD score(0.595,P<0.001)models;similar findings were observed in the validation set(P<0.05).Calibration curve and decision curve demonstrated that the nomogram model had high consistency and clinical net benefit.Conclusion A nomogram risk prediction model based on independent risk factors of advanced liver fibrosis patients with CHB combined with hepatic steatosis is constructed in this study.After verification,the model has high predictive efficiency,consistency,and clinical net gain.

Chronic hepatitis BNonalcoholic fatty liver diseaseAdvanced cirrhosisNomogram

江浩、余宏圣、杨碧兰、阿布都克尤木·斯马依、吴斌、杨逸冬

展开 >

510630 广州,中山大学附属第三医院消化内科

510630 广州,中山大学附属第三医院广东省肝病重点实验室

慢性乙型肝炎 非酒精性脂肪性肝病 晚期肝纤维化 列线图

广东省自然科学基金杰出青年基金

2022B1515020024

2024

中华消化病与影像杂志(电子版)
中华医学会

中华消化病与影像杂志(电子版)

CSTPCD
影响因子:0.641
ISSN:2095-2015
年,卷(期):2024.14(2)
  • 14