首页|基于兵棋推演的空战编组对抗智能决策方法

基于兵棋推演的空战编组对抗智能决策方法

扫码查看
基于兵棋研究的空战编组对抗方法主要使用规则或运筹等手段,存在假设不够合理、建模不准确、应变性差等缺陷.强化学习算法可以根据作战数据自主学习编组对抗策略,以应对复杂的战场情况,但现有强化学习对作战数据要求高,当动作空间过大时,算法收敛慢,且对仿真平台有较高的要求.针对上述问题,提出了一种融合知识数据和强化学习的空战编组对抗智能决策方法,该决策方法的输入是战场融合态势,使用分层决策框架控制算子选择并执行任务,上层包含使用专家知识驱动的动作选择器,下层包含使用专家知识和作战规则细化的避弹动作执行器、侦察动作执行器和使用强化学习算法控制的打击动作执行器.最后基于典型作战场景进行实验,验证了该方法的可行性和实用性,且具有建模准确、训练高效的优点.
Intelligent Decision of Air Combat Formation Confrontation Based on War Game
The air combat formation confrontation method based on war game research mainly uses rules or operation research and other means,which has some defects,such as unreasonable hypothesis,inaccurate modeling,poor adaptability and so on.Reinforcement learning algorithm can independently learn and organize countermeasure strategies according to combat data to deal with complex battlefield conditions,but the existing reinforcement learning has high requirements for combat data.When the action space is too large,the convergence of the algorithm is slow,and has higher requirements for the simulation platform.In view of the above problems,an intelligent decision-making method for air combat formation confrontation integrating knowledge data and reinforcement learning is proposed.The input of the decision-making method is the battlefield fusion situation.The hierarchical decision-making framework is used to control the operator to select and execute the task,and the upper layer includes an action selector driven by expert knowledge.The lower layer includes the bullet avoidance action actuator,reconnaissance action actuator and strike action actuator controlled by reinforcement learning algorithm.Finally,experiments based on typical combat scenarios are carried out to verify the feasibility and practicability of the proposed method,and the experiments show that the method has the advantages of accurate modeling and efficient training,etc.

air combat formation confrontationmulti-operator collaboration and controlmulti-agent deep reinforcement learning algorithmhierarchical decision-making model

陈晓轩、冯旸赫、黄金才、刘忠、徐越

展开 >

国防科技大学系统工程学院,长沙 410072

解放军31102部队,南京 210016

空战编组对抗 多算子的协作与控制 多智能体深度强化学习算法 分层决策模型

2024

指挥与控制学报

指挥与控制学报

CSTPCD北大核心
ISSN:
年,卷(期):2024.10(2)
  • 9