首页|基于Gamma混合模型的出租车落客行为

基于Gamma混合模型的出租车落客行为

扫码查看
为了更好地理解枢纽送站坪出租车落客行为,提高落客区域通行效率,提出基于Gamma混合模型的出租车落客决策模型。应用精确的出租车轨迹数据,将出租车停车时间分解为主动停车时间、被迫停车时间和落客时间,基于被迫停车时间分析构建等待耐性混合分布模型,模型验证结果与真实数据相吻合。在此基础上,以潜在乘客耐心分布、停车位置、期望停车位和行程时间为落客决策模型的核心指标,提取相关因子为解释变量,以是否落客为被解释变量,构建二元面板Logit模型,并对模型进行检验。结果表明,乘客耐心对车辆落客起着决定性的作用,落客决策模型预测准确率超过 81%,表明该模型能够较好地预测出租车落客行为,为研究缓堵策略提供基础。
Taxi drop-off behavior based on Gamma hybrid model
A taxi drop-off decision model was proposed based on the Gamma hybrid model,in order to better understand the taxi drop-off behavior and improve the drop-off area's traffic efficiency.The accurate taxi trajectory data was used,and the taxi stopping time was decomposed into active stopping time,forced stopping time,and drop-off time.A mixed distribution model of waiting tolerance was established based on the analysis of forced stopping time.The verification results of the model were consistent with the actual data.On this basis,the potential passenger patience distribution,parking location,expected parking space,and travel time were taken as the core indicators of the drop-off decision model.Then,relevant factors were extracted as explanatory variables,with drop-off or not as explained variables.Finally,a binary panel Logit model was constructed and tested.Results show that passenger patience plays a decisive role in vehicle drop-off.The prediction accuracy of the drop-off decision model is more than 81%,which indicates that the model can well predict taxi drop-off behavior and provides a research basis for the further research on congestion reduction strategy.

passenger terminalpassenger drop-off areaGamma hybrid modeldrop-off decisionpanel data model

杨方宜、杨荣根、李伟兵、何向东

展开 >

金陵科技学院智能科学与控制工程学院,江苏南京 211169

南京理工大学机械工程学院,江苏南京 210094

浙江好易点智能科技有限公司,浙江金华 321042

客运枢纽 落客区域 Gamma混合模型 落客决策 面板数据模型

江苏省高等学校自然科学基金资助项目金陵科技学院博士科研启动基金资助项目金陵科技学院科研基金孵化资助项目

22KJD580003jitb-202113jitfhxm-202105

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(3)
  • 31