首页|基于遥感图像道路提取的全局指导多特征融合网络

基于遥感图像道路提取的全局指导多特征融合网络

扫码查看
在遥感图像中,建筑与道路的类间相似度高,且存在阴影和遮挡,使得现有深度学习语义分割网络在分割道路时误分割率高,为此提出全局指导多特征融合网络(GGMNet)用于提取遥感图像中的道路。将特征图分为若干个局部特征,再将全局上下文信息与局部特征相乘,强化各类别特征的提取,以降低网络对道路周边相似地物的误判率。采用融合多阶段特征的方法准确定位道路空间,降低将其余地物识别为道路的概率。设计自适应全局通道注意力模块,利用全局信息指导局部信息,丰富每个像素的上下文信息。在解码阶段,设计多特征融合模块,充分利用并融合骨干网络 4 个阶段的特征图中的位置信息与语义信息,发掘层与层之间的关联性以提升分割精度。使用CITY-OSM数据集、DeepGlobe道路提取数据集和CHN6-CUG数据集对网络进行训练和测试。测试结果表明,GGMNet具有优秀的道路分割性能,降低道路误分割率的能力比对比网络强。
Global guidance multi-feature fusion network based on remote sensing image road extraction
Due to the high similarity between buildings and roads in remote sensing images,as well as the existence of shadows and occlusion,the existing deep learning semantic segmentation network generally has a high false segmentation rate when it comes to road segmentation.A global guide multi-feature fusion network(GGMNet)was proposed for road extraction in remote sensing images.To reduce the network's misjudgment rate of similar features around the road,the feature map was divided into several local features,and then the features were multiplied by the global context information to strengthen the extraction of various features.The method of integrating multi-stage features was used to accurate spatial positioning of roads and reduce the probability of identifying other ground objects as roads.An adaptive global channel attention module was designed,and the global information was used to guide the local information,so as to enrich the context information of each pixel.In the decoding stage,a multi-feature fusion module was designed to make full use of the location information and the semantic information in the feature map of the four stages in the backbone network,and the correlations between layers were uncovered to improve the segmentation accuracy.The network was trained and tested using CITY-OSM dataset,DeepGlobe Road extraction dataset and CHN6-CUG dataset.Test results show that GGMNet has excellent road segmentation performance,and the ability to reduce the false segmentation rate of road segmentation is better than comparing networks.

remote sensing imagedeep learningroad extractionattention mechanismcontext information

宦海、盛宇、顾晨曦

展开 >

南京信息工程大学 人工智能学院,江苏 南京 210044

南京邮电大学 集成电路科学与工程学院,江苏 南京 210003

遥感图像 深度学习 道路提取 注意力机制 上下文信息

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(4)
  • 29