首页|基于改进图卷积神经网络的航空行李特征感知

基于改进图卷积神经网络的航空行李特征感知

扫码查看
针对航空行李自动化码放处理需求下构型特征感知能力不足的问题,设计以PointNet++为基准,融入图卷积神经网络和自注意力机制的航空行李特征感知网络模型。在骨干网络的特征抽象层中引入局部空间注意力模块,提取航空行李点云中相邻点的关联空间结构特征,感知区域特征空间的内在联系。通过全局特征聚合模块学习行李点云局部特征间的相关性,自适应聚合航空行李局部特征,形成点云全局上下文信息。利用循环最大池化层回收特征降维中丢弃点的特征,在多个层次上收集航空行李的特征信息,在减少信息冗余的同时,保留强度鲜明的局部、全局特征激活。实验结果表明,航空行李分类的平均精度和整体精度分别为 94。68%和 96。32%,比Point-Net++分别提高了 6。53%和 5。07%。该网络模型的航空行李特征感知性能优于现有的其他智能算法,能够为航空行李码放空间优化及控制提供准确、可靠、有效的输入。
Airline baggage feature perception based on improved graph convolu-tional neural network
An airline baggage feature perception network model was designed with PointNet++ as the benchmark and incorporating graph convolutional neural network and self-attention mechanism aiming at the problem that the configuration feature perception capability of airline baggage was inadequate under the demand of automatic baggage stacking handling.The local spatial attention module was introduced in the feature abstraction layer of the backbone network to extract associated spatial structure features of neighboring points in aviation baggage point cloud in order to perceive the intrinsic connection of its region feature space.Correlation between local features of airline baggage point cloud was learned through the global feature aggregation module to adaptively aggregate local features so as to form global contextual information.The recycling maxpooling layer was applied to recycle features from some discard points in the feature reduction process and collect baggage information at multiple levels,reducing information redundancy while retaining local and global feature activations with stark intensity.The experimental results showed that the average and overall accuracy of airline baggage classification were 94.68%and 96.32%,which were 6.53%and 5.07%improved over PointNet++,respectively.The airline baggage feature perception performance of the network model is better than other existing intelligent algorithms,which can provide accurate,reliable and effective input for airline baggage stacking space optimization and control.

air transportbaggage feature perceptionthree-dimensional point cloudgraph convolutional neural networkself-attention mechanism

邢志伟、朱书杰、李彪

展开 >

中国民航大学电子信息与自动化学院,天津 300300

航空运输 行李特征感知 三维点云 图卷积神经网络 自注意力机制

国家重点研发计划中国民航大学研究生科研创新项目

2018YFB16012002022YJS023

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(5)
  • 22