首页|基于多尺度特征融合的轻量化道路提取模型

基于多尺度特征融合的轻量化道路提取模型

扫码查看
针对当前用于遥感图像道路提取领域的语义模型存在计算复杂度较高、道路提取效果不佳的问题,提出基于多尺度特征融合的轻量化道路提取模型(MFL-DeepLab V3+)。为了减少模型参数量并降低模型的计算复杂度,骨干网络选用轻量化Mobilenet V2 网络代替原模型的Xception网络,在空洞空间金字塔池化(ASPP)模块中引入深度可分离卷积。为了增强模型的道路提取能力,优化对细小路段的提取效果,在解码区提出联合注意力的多尺度特征融合(MFFA)。基于Massachusetts roads数据集的各项实验表明,MFL-DeepLab V3+模型的参数规模显著降低,较原模型参数量压缩了 88。67%,道路提取图像完整,边缘清晰,精确率、召回率和F1 分数分别达到 88。45%、86。41%和 87。42%,与其他模型相比取得了更好的提取效果。
Lightweight road extraction model based on multi-scale feature fusion
A road extraction model based on multi-scale feature fusion lightweight DeepLab V3+(MFL-DeepLab V3+)was proposed aiming at the problems of high computational complexity and poor road extraction effect of the current semantic models used in the field of remote sensing image road extraction.The lightweight MobileNet V2 network was used to replace the original model's Xception network as the backbone network in order to reduce the parameters of the model and the computational complexity of the model.Deep separable convolution was introduced into the Atlas spatial pyramid pooling(ASPP)module.A multi-scale feature fusion with attention(MFFA)was proposed in the decoding area in order to enhance the road extraction ability of the model and optimize the extraction effect on small road segments.Experiments based on the Massachusetts roads dataset showed that the parameter size of the MFL-DeepLab V3+ model was significantly reduced with a parameter compression of 88.67%compared to the original model.The road extraction image had clear edges,and its accuracy,recall,and F1-score were 88.45%,86.41%and 87.42%,achieving better extraction performance compared to other models.

semantic segmentationroad extractionMFL-DeepLab V3+multi-scale feature fusionattention mechanism

刘毅、陈一丹、高琳、洪姣

展开 >

天津城建大学计算机与信息工程学院,天津 300384

语义分割 道路提取 MFL-DeepLab V3+ 多尺度特征融合 注意力机制

天津市教委科研项目

2019KJ094

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(5)
  • 31