首页|基于改进Mask R-CNN与双目视觉的智能配筋检测

基于改进Mask R-CNN与双目视觉的智能配筋检测

扫码查看
为了提高配筋检测的智能化水平,提出基于改进掩膜区域卷积神经网络(Mask R-CNN)模型与双目视觉技术的配筋检测方法。通过在Mask R-CNN中加入自下而上的注意力机制路径,形成了带通道注意力和空间注意力的掩膜区域卷积神经网络(Mask R-CNN+CA-SA)改进模型。结合双目视觉技术进行坐标转换,获取钢筋直径与间距,实现智能配筋检测。在自建的包含 3 450 张钢筋图片的数据集上进行训练,结果表明,改进模型的F1 分数和全类平均精确率(mAP)相较于Mask R-CNN基础网络分别提高了 2。54%和 2。47%。通过钢筋网验证试验和复杂背景测试,钢筋直径的绝对误差和相对误差基本小于 1。7 mm和 10%,钢筋间距的绝对误差和相对误差分别小于 4 mm和 3。2%,所提方法在实际应用中具有较强的可操作性。智能配筋检测技术在保证足够的检测精度的同时,能够大大提升工效,降低人工成本。
Intelligent rebar inspection based on improved Mask R-CNN and stereo vision
A rebar inspection method based on improved mask region with convolutional neural network(Mask R-CNN)model and stereo vision technology was proposed in order to promote the transformation of reinforcement inspection to intelligence.The improved model Mask R-CNN with channel attention and spatial attention(Mask R-CNN+CA-SA)was formed by adding a bottom-up path with attention mechanism in Mask R-CNN.The diameter and spacing of rebar can be obtained by combining stereo vision technology for coordinate transformation,thereby achieving intelligent rebar inspection.The training was conducted on a self-built dataset containing 3450 rebar pictures.Results showed that the Mask R-CNN+CA-SA model increased the F1 score and mean average precision(mAP)by 2.54%and 2.47%compared with the basic network of Mask R-CNN,respectively.The rebar mesh verification test and complex background test showed that the absolute error and relative error of rebar diameter were basically controlled within 1.7 mm and 10%,and the absolute error and relative error of rebar spacing were controlled within 4 mm and 3.2%respectively.The proposed method is highly operable in practical applications.The intelligent rebar inspection technology can greatly improve work efficiency and reduce labor costs while ensuring sufficient inspection accuracy.

rebar quality inspectionMask R-CNNattention mechanismdeep learningstereo vision techno-logy

魏翠婷、赵唯坚、孙博超、刘芸怡

展开 >

浙江大学建筑工程学院,浙江杭州 310058

浙江大学平衡建筑研究中心,浙江杭州 310028

配筋质量检测 Mask R-CNN 注意力机制 深度学习 双目视觉技术

国家自然科学基金国家自然科学基金

5210825452208215

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(5)
  • 32