首页|适用于无人水下潜航器电池管理系统的SOC-SOH联合估计

适用于无人水下潜航器电池管理系统的SOC-SOH联合估计

扫码查看
为了提高无人水下潜航器(UUV)电池管理系统状态的估计精度,提出荷电状态-健康状态(SOC-SOH)联合估计方法。搭建测试台架,采用 4 组锂离子电池进行全寿命周期下的充放电测试,获取不同老化程度下的特性数据。经理论推导和实验分析设计四维表征因子,建立基于改进支持向量回归(SVR)的SOH估计模型。探究电池状态的耦合关系,建立基于扩展卡尔曼滤波(EKF)的SOC估计模型,采用遗忘因子递推最小二乘算法(RLS)更新模型参数,利用SOH对SOC估计结果进行修正。通过不同工况的实验进行验证,结果表明:四维表征因子和电池容量相关性好,SOH估计模型精度高,SOC估计模型精度在联合修正后得到提升。所提的联合估计方法具有较高的通用性和可靠性,可以作为有效的嵌入式电池管理系统状态估计算法。
Joint SOC-SOH estimation for UUV battery management system
A joint state of charge(SOC)-state of health(SOH)method of estimation was proposed in order to improve the state estimation accuracy of unmanned underwater vehicle(UUV)battery management system.A test bench was constructed,and four groups of lithium-ion batteries were used for charging and discharging test under the whole life cycle.Data under different attenuation degrees were obtained.Four-dimensional factors were designed by theoretical derivation and experimental analysis,and a SOH estimation model based on improved support vector regression(SVR)was established.The coupling relationship between battery states was explored.A SOC estimation model based on extended Kalman filter(EKF)was established and the forgetting factor recursive least squares(RLS)algorithm was used to update the model parameters.The SOC estimation results were corrected by SOH.The method was validated through different testing conditions experiment.Results show that the four-dimensional characterization factor and battery capacity have good correlation.The accuracy of SOH estimation model is high,and the accuracy of SOC estimation model is improved by joint modification.The proposed joint estimation method has high universality and reliability,and can be used as an effective state estimation algorithm for embedded battery management system.

unmanned underwater vehicle(UUV)lithium-ion batterySOC-SOH joint estimationextended Kalman filter(EKF)support vector regression(SVR)

卢地华、周胜增、陈自强

展开 >

上海船舶电子设备研究所,上海 201108

水声对抗技术重点实验室,上海 201108

上海交通大学海洋工程国家重点实验室,高新船舶与深海开发装备协同创新中心,上海 200240

无人潜航器(UUV) 锂离子电池 SOC-SOH联合估计 扩展卡尔曼滤波(EKF) 支持向量回归(SVR)

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(5)
  • 22