首页|基于边界点估计与稀疏卷积神经网络的三维点云语义分割

基于边界点估计与稀疏卷积神经网络的三维点云语义分割

扫码查看
针对大规模点云具有稀疏性,传统点云方法提取上下文语义特征不够丰富,并且语义分割结果存在物体边界模糊的问题,提出基于边界点估计与稀疏卷积神经网络的三维点云语义分割算法,主要包括体素分支与点分支。对于体素分支,将原始点云进行体素化后经过稀疏卷积得到上下文语义特征;进行解体素化得到每个点的初始语义标签;将初始语义标签输入到边界点估计模块中得到可能的边界点。对于点分支,使用改进的动态图卷积模块提取点云局部几何特征;依次经过空间注意力模块与通道注意力模块增强局部特征;将点分支得到的局部几何特征与体素分支得到的上下文特征融合,增强点云特征的丰富性。本算法在S3DIS数据集和Se-manticKITTI数据集上的语义分割精度分别达到69。5%和62。7%。实验结果表明,本研究算法能够提取到更丰富的点云特征,可以对物体的边界区域进行准确分割,具有较好的三维点云语义分割能力。
Semantic segmentation of 3D point cloud based on boundary point estimation and sparse convolution neural network
The large-scale point clouds are sparse,the traditional point cloud methods are insufficient in extracting rich contextual semantic features,and the semantic segmentation results have the problem of fuzzy object boundaries.A 3D point cloud semantic segmentation algorithm based on boundary point estimation and sparse convolution neural network was proposed,mainly including the voxel branch and the point branch.For the voxel branch,the original point cloud was voxelized,and then the contextual semantic features were obtained by sparse convolution.The initial semantic label of each point was obtained by voxelization.Finally,it was input into the boundary point estimation module to get the possible boundary points.For the point branch,the improved dynamic graph convolution module was first used to extract the local geometric features of the point cloud.Then,the local features were enhanced through the spatial attention module and the channel attention module in turn.Finally,the local geometric features obtained from the point branch and the contextual features obtained from the voxel branch were fused to enhance the richness of point cloud features.The semantic segmentation accuracy values of this algorithm on the S3DIS dataset and SemanticKITTI dataset were 69.5%and 62.7%,respectively.Experimental results show that the proposed algorithm can extract richer features of point clouds,accurately segment object boundary regions,and has good semantic segmentation ability for 3D point clouds.

point cloud datasemantic segmentationattention mechanismsparse convolutionvoxelization

杨军、张琛

展开 >

兰州交通大学电子与信息工程学院,甘肃兰州 730070

兰州交通大学测绘与地理信息学院,甘肃兰州 730070

点云数据 语义分割 注意力机制 稀疏卷积 体素化

国家自然科学基金兰州市人才创新创业项目甘肃省教育厅优秀研究生"创新之星"项目

422610672020-RC-222022CXZX-613

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(6)