首页|基于遗传算法-序列二次规划的磁共振被动匀场优化方法

基于遗传算法-序列二次规划的磁共振被动匀场优化方法

扫码查看
为了解决磁共振成像(MRI)系统中固有的主磁场(B0)不均匀的问题,提出遗传算法-序列二次规划(GA-SQP)算法,以提高7T磁共振的主磁场均匀性。从被动匀场数学模型的角度出发,该混合算法利用GA算法获得稳定的初始解,实现主磁场的第1次优化,再通过SQP算法的快速求解,在较少的时间内实现主磁场的第2次优化,同时提高磁共振主磁场的均匀性。采用正则化方法减少磁场均匀所需的铁片质量,并且获得稀疏的铁片分布。在仿真建模的案例研究中,7T磁共振裸磁场均匀度可以从462×10-6优化到4。5×10-6,并且在匀场空间上仅消耗0。8 kg的铁片。相比于传统的GA优化方法,新方案的磁场均匀性提高了 96。7%,总铁片消耗质量减少了 85。7%。实验结果表明,GA-SQP算法比其他优化算法具有更强的鲁棒性和竞争力。
Passive shimming optimization method of MRI based on genetic algorithm-sequential quadratic programming
A genetic algorithm-sequential quadratic programming(GA-SQP)was proposed to improve the uniformity performance of main magnetic field(B0)in 7 T magnetic resonance imaging(MRI),in order to solve the inherent problem of uneven B0 field in MRI system.From the perspective of the mathematical model of passive shimming,a stable initial solution was obtained with the GA algorithm to achieve the first optimization of B0 field,and then the second optimization of the main magnetic field was realized in less time through the rapid solution of the SQP algorithm,and the uniformity of B0 of MRI was significantly improved.Additionally,L1-Norm regularization method was utilized to reduce the weight of the iron sheets and obtain a sparse iron distribution.Through simulation-based case studies,a bare magnetic field successfully shimmed with an uniformity of 462 × 10-6 to 4.5 × 10-6,using only 0.8 kg of iron pieces on shimming space.The magnetic field uniformity of the new solution was improved by 96.7%and the total iron sheet consumption weight was reduced by 85.7%,compared with those of the traditional GA optimization method.Experimental results show that the GA-SQP algorithm is more robust and competitive than other optimization algorithms.

magnetic resonance imagingpassive shimminggenetic algorithm-sequential quadratic program-ming(GA-SQP)regularization methodnonlinear programming

赵杰、刘锋、夏灵、范一峰

展开 >

杭州医学院医学影像学院,浙江杭州 310053

昆士兰大学信息技术与电气工程学院,昆士兰布里斯班4072

浙江大学生物医学工程教育部重点实验室,浙江杭州 310027

磁共振成像 被动匀场 遗传算法-序列二次规划(GA-SQP) 正则化方法 非线性优化

浙江省基础公益研究计划

LTGY23H180019

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(6)