首页|基于模型预测的四足机器人运动控制

基于模型预测的四足机器人运动控制

扫码查看
针对具有多自由度的四足机器人,结合中枢模式发生器(CPG)和模型预测控制机理(MPC),提出 2 种模型融合的神经控制方法。该方法以模型预测原理为基础,通过模拟生物神经控制机制,构建腿足机器人行为运动神经控制架构。该架构能够处理外部环境信息,自适应调节机身和腿部位置,实现机器人位置跟踪、全向运动和多种非典型步态。实验结果表明,基于MPC-CPG控制架构的机器人可以快速响应并消除位置误差和角度误差,机身轨迹跟踪的位置误差始终保持在-0。1~0。1 m,姿态角误差保持在-0。05~0。05 rad。在 MPC-CPG控制器的作用下,机器人不仅具有较高的轨迹跟踪精度,还表现出行为多样性,验证了所提出的MPC-CPG控制器的有效性。
Motion control of quadruped robot based on model prediction
A neural control method based on fusion of two models was proposed for a quadruped robot with multiple degrees of freedom,combining central pattern generator(CPG)and model predictive control(MPC).A behavioral movement neural control architecture for a legged robot was constructed based on model predictive theory by simulating biological neural mechanisms.This architecture can process the external environment information,adaptively adjust the position of the body and legs,and realize position tracking,omnidirectional movement and a variety of atypical gaits of quadruped robot.The experimental results show that the quadruped robot based on the MPC-CPG architecture can quickly respond and eliminate the position error and angle error,the position error in trajectory tracking is always kept at-0.1~0.1 m,and the attitude angle error is kept at-0.05~0.05 rad.The quadruped robot not only has high trajectory tracking accuracy,but also exhibits behavioral diversity with the MPC-CPG controller,which verifies the effectiveness of the proposed MPC-CPG controller.

quadruped robotneural controlcentral pattern generatormodel predictive controlbehavior diversity

秦海鹏、秦瑞、施晓芬、朱小明

展开 >

兰州城市学院培黎机械工程学院,甘肃兰州 730070

长安大学道路施工技术与装备教育部重点实验室,陕西西安 710064

四足机器人 神经控制 中枢模式发生器 模型预测控制 行为多样性

甘肃省教学成果培育项目

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(8)
  • 23